

MoCA 2.0/2.5 Specification for Device RF Characteristics

20160808

Copyright © 2012, 2014, 2016 Multimedia Over Coax Alliance. All Rights Reserved. MoCA is a trademark or registered trademark of the Multimedia Over Coax Alliance in the United States and other countries.

IMPORTANT NOTICE. THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN ARE PROVIDED "AS IS" AND "WITH ALL FAULTS". NEITHER MOCA NOR ANY MEMBER OF MOCA MAKES ANY REPRESENTATIONS OR WARRANTIES OF ANY KIND WHATSOEVER WITH RESPECT TO (A) THIS DOCUMENT, (B) ANY PRODUCT THAT IS DEVELOPED OR MANUFACTURED IN ACCORDANCE WITH THE SPECIFICATIONS IN THIS DOCUMENT OR (C) THE INTEROPERABILITY OF ANY SUCH PRODUCT WITH ANY OTHER PRODUCT. MOCA AND MOCA MEMBERS DISCLAIM ALL IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, NON-INFRINGEMENT AND TITLE. NEITHER MOCA NOR ANY MEMBER OF MOCA MAKES ANY REPRESENTATIONS OR WARRANTIES THAT THE CONTENTS OF THE DOCUMENT ARE COMPLETE, ACCURATE OR SUITABLE FOR ANY PURPOSE OR THAT ANY PRODUCT OR OTHER IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY PATENTS, COPYRIGHTS OR OTHER RIGHTS. IN NO EVENT WILL MOCA OR ANY MOCA MEMBER BE LIABLE FOR ANY LOSSES, INVESTMENTS MADE, LIABILITIES, LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OF BUSINESS, OR FOR ANY DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, INCIDENTIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT, TORT, NEGLIGENCE OR OTHER LEGAL THEORY, INCLUDING WITHOUT LIMITATION IN CONNECTION WITH THE USE OF THIS DOCUMENT, THE INFORMATION CONTAINED HEREIN OR ANY PRODUCT OR IMPLEMENTATION, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. USE OF THIS DOCUMENT IS AT YOUR SOLE RISK. From time to time MoCA may issue improvements, enhancements and other changes to the specification described in this document.

Table of Contents

1.1 Scope 6 1.2 Introduction 6 1.3 Abbreviations 6 1.4 Definitions 6 1.4 Definitions 6 1.5 Physical Network Model 7 2 MoCA 2.0 and MoCA 2.5 Reference Specification 8 2.1 MoCA 2.0 Band E Frequency Plan 8 2.1.1 MoCA 2.0 Band E Frequency Plan 9 2.1.2 MoCA 2.0 Band E Frequency Plan 10 2.1.3 MoCA 2.0 Band E Frequency Plan 12 2.1.4 MoCA 2.5 Sand E Frequency Plan 12 2.1.5 MoCA 2.5 Band E Frequency Plan 14 2.2 Connector and Return Loss 14 2.3 Maximum Total Output Power 14 2.4 MoCA 2.5 PHY Transmit Spectral Mask 15 2.4.1 MoCA 2.0 PHY Transmit Spectral Mask 15 2.4.2 MoCA 2.0 RF Mode Transmit Spectral Mask 20 2.5 MoCA 2.0 RF Mode Transmit Spectral Mask 20 2.5.4 MoCA 2.5 Reference Specific Transmit Spectral Mask 20 2.5.4 M	1	MoC	CA 2.0/2.5 Specification - Introduction and Scope	6
1.3 Abbreviations		1.1	Scope	6
1.4 Definitions		1.2	Introduction	6
1.5 Physical Network Model 7 2 MoCA 2.0 and MoCA 2.5 Reference Specification 8 2.1 MoCA 2.0 Extended Band D Frequency Plan 8 2.1.1 MoCA 2.0 Extended Band D Frequency Plan 8 2.1.2 MoCA 2.0 Band E Frequency Plan 10 2.1.3 MoCA 2.0 Band F Frequency Plan 11 2.1.4 MoCA 2.5 Extended Band D Frequency Plan 12 2.1.5 MoCA 2.5 Band E Frequency Plan 14 2.2 Connector and Return Loss 14 2.3 Maximum Total Output Power 14 2.4 MoCA 2.5 PHY Transmit Spectral Mask and Spurious 15 2.4.1 MoCA 2.0 FHY Transmit Spectral Mask 19 2.4.4 MoCA 1 PHY Transmit Spectral Mask 24 2.5 MoCA 1 PHY Transmit Spurious Cutput 24 2.5.1 Extended Band D Transmit Spurious Utput 24 2.5.2 Band E Transmit Spurious Emissions 25 2.5.3 Band F Transmit Spurious Emissions 25 2.6.1 Band ASpecific Transmit Spurious and Noise Emissions 28 2.6.2 Band E Transmit Spurious and Noise Emissions <td></td> <td>1.3</td> <td>Abbreviations</td> <td>6</td>		1.3	Abbreviations	6
2 MoCA 2.0 and MoCA 2.5 Reference Specification 8 2.1 MoCA Frequency Plan 8 2.1.1 MoCA 2.0 Extended Band D Frequency Plan 10 2.1.2 MoCA 2.0 Band E Frequency Plan 10 2.1.3 MoCA 2.0 Band F Frequency Plan 11 2.1.4 MoCA 2.5 Extended Band D Frequency Plan 12 2.1.5 MoCA 2.5 Band E Frequency Plan 14 2.2 Connector and Return Loss 14 2.3 Maximum Total Output Power 14 2.4 MoCA 7 transmits pectral Mask 15 2.4.1 MoCA 2.5 PHY Transmit Spectral Mask and Spurious 15 2.4.3 Bonded-PHY Transmit Spectral Mask 19 2.4.4 MoCA 1 PHY Transmit Spectral Mask 24 2.5 MoCA 2.0 RF Mode Transmitter Spurious Output 24 2.5.4 MoCA 2.0 RF Mode Transmitter Spurious Output 24 2.5.5 Band E Transmit Spurious Emissions 25 2.6 MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions 26 2.6.1 Band E Transmit Spurious Emissions 28 2.6.2 Band E Transmit Spurious Emissions <td></td> <td>1.4</td> <td>Definitions</td> <td>6</td>		1.4	Definitions	6
2 MoCA 2.0 and MoCA 2.5 Reference Specification 8 2.1 MoCA Frequency Plan 8 2.1.1 MoCA 2.0 Extended Band D Frequency Plan 10 2.1.2 MoCA 2.0 Band E Frequency Plan 10 2.1.3 MoCA 2.0 Band F Frequency Plan 11 2.1.4 MoCA 2.5 Extended Band D Frequency Plan 12 2.1.5 MoCA 2.5 Band E Frequency Plan 14 2.2 Connector and Return Loss 14 2.3 Maximum Total Output Power 14 2.4 MoCA 7 transmits pectral Mask 15 2.4.1 MoCA 2.5 PHY Transmit Spectral Mask and Spurious 15 2.4.3 Bonded-PHY Transmit Spectral Mask 19 2.4.4 MoCA 1 PHY Transmit Spectral Mask 24 2.5 MoCA 2.0 RF Mode Transmitter Spurious Output 24 2.5.4 MoCA 2.0 RF Mode Transmitter Spurious Output 24 2.5.5 Band E Transmit Spurious Emissions 25 2.6 MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions 26 2.6.1 Band E Transmit Spurious Emissions 28 2.6.2 Band E Transmit Spurious Emissions <td></td> <td>1.5</td> <td>Physical Network Model</td> <td></td>		1.5	Physical Network Model	
2.1 MoCA Frequency Plan 8 2.1.1 MoCA 2.0 Extended Band D Frequency Plan 10 2.1.2 MoCA 2.0 Band F Frequency Plan 10 2.1.3 MoCA 2.0 Band F Frequency Plan 11 2.1.4 MoCA 2.5 Extended Band D Frequency Plan 12 2.1.5 MoCA 2.5 Extended Band D Frequency Plan 14 2.2 Connector and Return Loss 14 2.3 Maximum Total Output Power 14 2.4 MoCA 7 transmitter Spectral Mask 15 2.4.1 MoCA 2.5 PHY Transmit Spectral Mask and Spurious 15 2.4.2 MoCA 2.0 PHY Transmit Spectral Mask and Spurious 18 2.4.3 Bonded-PHY Transmit Spectral Mask 20 2.5.4 MoCA 1 PHY Transmit Spectral Mask 20 2.5.1 Extended Band D Transmit Spurious Output 24 2.5.1 Extended Band D Spurious Emissions 24 2.5.2 Band F Transmit Spurious Emissions 26 2.6.3 Band F Transmit Spurious Emissions 26 2.6.4 MoCA 2.0 Receiver Minimum Sensitivity 30 2.6.3 Band F Transmit Spurious and Noise Emissions			-	
2.1.1 MoCA 2.0 Extended Band D Frequency Plan 8 2.1.2 MoCA 2.0 Band E Frequency Plan 10 2.1.3 MoCA 2.0 Band F Frequency Plan 11 2.1.4 MoCA 2.5 Extended Band D Frequency Plan 12 2.1.5 MoCA 2.5 Band E Frequency Plan 12 2.1.5 MoCA 2.5 Band E Frequency Plan 14 2.2 Connector and Return Loss 14 2.3 Maximum Total Output Power 14 2.4 MoCA 2.5 PHY Transmit Spectral Mask and Spurious 15 2.4.1 MoCA 2.5 PHY Transmit Spectral Mask and Spurious 15 2.4.2 MoCA 2.0 PHY Transmit Spectral Mask and Spurious 18 2.4.3 Bonded-PHY Transmit Spectral Mask 20 2.5.4 MoCA 2.0 RF Mode Transmit Spurious Output .24 2.5.1 Extended Band D Transmit Spurious Cutput .24 2.5.2 Band F Transmit Spurious Emissions .25 2.6.3 Band F Transmit Spurious Emissions .26 2.6.4 MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions .29 2.6.3 Band F Transmit Spurious and Noise Emissions .29 2.6.4			-	
2.1.2 MoCA 2.0 Band E Frequency Plan 10 2.1.3 MoCA 2.0 Band F Frequency Plan 11 2.1.4 MoCA 2.5 Extended Band D Frequency Plan 12 2.1.5 MoCA 2.5 Band E Frequency Plan 14 2.2 Connector and Return Loss 14 2.3 Maximum Total Output Power 14 2.4 MoCA 2.5 PHY Transmit Spectral Mask 15 2.4.1 MoCA 2.0 PHY Transmit Spectral Mask and Spurious 18 2.4.2 MoCA 2.0 PHY Transmit Spectral Mask 19 2.4.4 MoCA 1 PHY Transmit Spectral Mask 20 2.5 MoCA 2.0 RF Mode Transmit Spectral Mask 20 2.5 MoCA 2.0 RF Mode Transmit Spurious Output 24 2.5.1 Extended Band D Transmit Spurious Emissions 24 2.5.2 Band E Transmit Spurious Emissions 26 2.6 Band E Transmit Spurious Emissions 28 2.6.1 Band Exp Transmit Spurious and Noise Emissions 28 2.6.2 Band E Transmit Spurious and Noise Emissions 29 2.6.3 Band F Transmit Spurious Emissions 29 2.6.4 Band E Transmit Spurious Emi				
2.1.3 MoCA 2.0 Band F Frequency Plan 11 2.1.4 MoCA 2.5 Extended Band D Frequency Plan 12 2.1.5 MoCA 2.5 Band E Frequency Plan 14 2.2 Connector and Return Loss 14 2.3 Maximum Total Output Power 14 2.4 MoCA 2.5 PHY Transmit Spectral Mask 15 2.4.1 MoCA 2.5 PHY Transmit Spectral Mask and Spurious 15 2.4.2 MoCA 2.0 PHY Transmit Spectral Mask and Spurious 18 2.4.3 Bonded-PHY Transmit Spectral Mask 19 2.4.4 MoCA 1 PHY Transmit Spectral Mask 20 2.5 MoCA 2.0 RF Mode Transmiter Spurious Output 24 2.5.1 Extended Band D Transmit Spurious Emissions 24 2.5.2 Band E Transmit Spurious Emissions 26 2.6.3 Band F Transmit Spurious Emissions 28 2.6.4 Band Specific Transmit Spurious and Noise Emissions 28 2.6.3 Band F Transmit Spurious and Noise Emissions 29 2.6.3 Band F Transmit Spurious and Noise Emissions 29 2.6.4 MoCA 2.0 Receiver Minimum Sensitivity 30 2.7.1				
2.1.4 MoCA 2.5 Extended Band D Frequency Plan 12 2.1.5 MoCA 2.5 Band E Frequency Plan 14 2.2 Connector and Return Loss 14 2.3 Maximum Total Output Power 14 2.3 Maximum Total Output Power 14 2.4 MoCA Transmitter Spectral Mask 15 2.4.1 MoCA 2.5 PHY Transmit Spectral Mask and Spurious 15 2.4.2 MoCA 2.0 PHY Transmit Spectral Mask 19 2.4.3 Bonded-PHY Transmit Spectral Mask 20 2.5 MoCA 2.0 RF Mode Transmit Spectral Mask 20 2.5 MoCA 2.0 RF Mode Transmit Spurious Output 24 2.5.1 Extended Band D Transmit Spurious Emissions 24 2.5.2 Band E Transmit Spurious Emissions 26 2.6 MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions 28 2.6.1 Band E Transmit Spurious and Noise Emissions 29 2.6.2 Band E Transmit Spurious and Noise Emissions 29 2.6.3 Band F Transmit Spurious and Noise Emissions 29 2.6.4 Band F Transmit Spurious and Noise Emissions 29 2.7.1				
2.1.5 MoCA 2.5 Band E Frequency Plan 14 2.2 Connector and Return Loss 14 2.3 Maximum Total Output Power 14 2.4 MoCA Transmitter Spectral Mask 15 2.4.1 MoCA 2.5 PHY Transmit Spectral Mask and Spurious 15 2.4.2 MoCA 2.0 PHY Transmit Spectral Mask and Spurious 18 2.4.3 Bonded-PHY Transmit Spectral Mask 19 2.4.4 MoCA 1 PHY Transmit Spectral Mask 20 2.5 MoCA 2.0 RF Mode Transmit Spurious Output 24 2.5.1 Extended Band D Transmit Spurious Emissions 24 2.5.2 Band E Transmit Spurious Emissions 24 2.5.3 Band F Transmit Spurious Emissions 26 2.6 MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions 28 2.6.1 Band E Transmit Spurious and Noise Emissions 29 2.6.3 Band F Transmit Spurious and Noise Emissions 29 2.6.4 MoCA 2.0 Receiver Minimum Sensitivity 30 2.7.1 MoCA 2.0 Receiver Minimum Sensitivity 30 2.7.2 MoCA 2.0 Receiver Minimum Sensitivity 32 2.8				
2.2 Connector and Return Loss 14 2.3 Maximum Total Output Power 14 2.4 MoCA Transmitter Spectral Mask 15 2.4.1 MoCA 2.5 PHY Transmit Spectral Mask and Spurious 15 2.4.2 MoCA 2.0 PHY Transmit Spectral Mask 19 2.4.3 Bonded-PHY Transmit Spectral Mask 19 2.4.4 MoCA 2.0 RF Mode Transmit Spectral Mask 20 2.5 MoCA 2.0 RF Mode Transmit Spurious Output 24 2.5.1 Extended Band D Transmit Spurious Emissions 24 2.5.2 Band E Transmit Spurious Emissions 25 2.5.3 Band F Transmit Spurious Emissions 26 2.6.1 Band ExD Transmit Spurious Emissions 28 2.6.2 Band E Transmit Spurious Emissions 29 2.6.3 Band F Transmit Spurious and Noise Emissions 29 2.6.3 Band E Transmit Spurious and Noise Emissions 29 2.6.4 Box CA 2.0 Receiver Minimum Sensitivity 30 2.7.1 MoCA 2.0 Receiver Minimum Sensitivity 30 2.7.2 MoCA 2.0 Receiver Minimum Sensitivity 32 2.8 Coexistence w				
2.3 Maximum Total Output Power			1 2	
2.4 MoCA Transmitter Spectral Mask 15 2.4.1 MoCA 2.5 PHY Transmit Spectral Mask and Spurious 15 2.4.2 MoCA 2.0 PHY Transmit Spectral Mask and Spurious 18 2.4.3 Bonded-PHY Transmit Spectral Mask 19 2.4.4 MoCA 1 PHY Transmit Spectral Mask 20 2.5 MoCA 2.0 RF Mode Transmit Spurious Output 24 2.5 MoCA 2.0 RF Mode Transmit Spurious Emissions 24 2.5.1 Extended Band D Transmit Spurious Emissions 25 2.5.3 Band E Transmit Spurious Emissions 26 2.6 MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions 28 2.6.1 Band ExD Transmit Spurious and Noise Emissions 28 2.6.2 Band F Transmit Spurious and Noise Emissions 29 2.6.3 Band F Transmit Spurious and Noise Emissions 29 2.6.4 MoCA 2.0 Receiver Minimum Sensitivity 30 2.7.1 MoCA 2.0 Receiver Minimum Sensitivity 32 2.8 Coexistence with Other Signals 33 2.8.1 CATV and DOCSIS Susceptibility 33 2.8.2 Satellite Susceptibility 34 <t< td=""><td></td><td></td><td></td><td></td></t<>				
2.4.1MoCA 2.5 PHY Transmit Spectral Mask and Spurious152.4.2MoCA 2.0 PHY Transmit Spectral Mask and Spurious182.4.3Bonded-PHY Transmit Spectral Mask192.4.4MoCA 1 PHY Transmit Spectral Mask202.5MoCA 2.0 RF Mode Transmit Spurious Output242.5.1Extended Band D Transmit Spurious Emissions242.5.2Band E Transmit Spurious Emissions252.5.3Band F Transmit Spurious Emissions262.6MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions282.6.1Band ExD Transmit Spurious and Noise Emissions282.6.2Band F Transmit Spurious and Noise Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.6.4MoCA 2.0 Receiver Minimum Sensitivity302.7.1MoCA 2.0 Receiver Minimum Sensitivity302.7.2MoCA 2.5 Receiver Minimum Sensitivity322.8Coexistence with Other Signals332.8.1CATV and DOCSIS Susceptibility332.8.2Satellite Susceptibility342.8.3Receiver Sensitivity to Gated Noise in Bands E and F362.9Sensitivity to ATSC Interference372.10Non-Transmit Spurious and Noise Emissions382.10.1Extended Band D Non-Transmit Emissions382.10.2Band E Non-Transmit Emissions342.10.2Band E Non-Transmit Emissions38<		2.3	Maximum Total Output Power	14
2.4.2 MoCA 2.0 PHY Transmit Spectral Mask and Spurious 18 2.4.3 Bonded-PHY Transmit Spectral Mask 19 2.4.4 MoCA 1 PHY Transmit Spectral Mask 20 2.5 MoCA 2.0 RF Mode Transmitter Spurious Output 24 2.5.1 Extended Band D Transmit Spurious Emissions 24 2.5.2 Band E Transmit Spurious Emissions 26 2.6 MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions 26 2.6.1 Band ExD Transmit Spurious and Noise Emissions 28 2.6.2 Band E Transmit Spurious and Noise Emissions 29 2.6.3 Band F Transmit Spurious and Noise Emissions 29 2.6.3 Band F Transmit Spurious and Noise Emissions 29 2.6.3 Band F Transmit Spurious and Noise Emissions 29 2.6.3 Band F Transmit Spurious and Noise Emissions 29 2.7 Receiver Minimum Sensitivity 30 2.7.1 MoCA 2.0 Receiver Minimum Sensitivity 30 2.7.2 MoCA 2.5 Receiver Minimum Sensitivity 32 2.8 Coexistence with Other Signals 33 2.8.1 CATV and DOCSIS Susceptibility 33 <td></td> <td>2.4</td> <td>MoCA Transmitter Spectral Mask</td> <td>15</td>		2.4	MoCA Transmitter Spectral Mask	15
2.4.2 MoCA 2.0 PHY Transmit Spectral Mask and Spurious 18 2.4.3 Bonded-PHY Transmit Spectral Mask 19 2.4.4 MoCA 1 PHY Transmit Spectral Mask 20 2.5 MoCA 2.0 RF Mode Transmitter Spurious Output 24 2.5.1 Extended Band D Transmit Spurious Emissions 24 2.5.2 Band E Transmit Spurious Emissions 26 2.6 MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions 26 2.6.1 Band ExD Transmit Spurious and Noise Emissions 28 2.6.2 Band E Transmit Spurious and Noise Emissions 29 2.6.3 Band F Transmit Spurious and Noise Emissions 29 2.6.3 Band F Transmit Spurious and Noise Emissions 29 2.6.3 Band F Transmit Spurious and Noise Emissions 29 2.6.3 Band F Transmit Spurious and Noise Emissions 29 2.7 Receiver Minimum Sensitivity 30 2.7.1 MoCA 2.0 Receiver Minimum Sensitivity 30 2.7.2 MoCA 2.5 Receiver Minimum Sensitivity 32 2.8 Coexistence with Other Signals 33 2.8.1 CATV and DOCSIS Susceptibility 33 <td></td> <td>2.4.1</td> <td>MoCA 2.5 PHY Transmit Spectral Mask and Spurious</td> <td></td>		2.4.1	MoCA 2.5 PHY Transmit Spectral Mask and Spurious	
2.4.3Bonded-PHY Transmit Spectral Mask192.4.4MoCA 1 PHY Transmit Spectral Mask202.5MoCA 2.0 RF Mode Transmitter Spurious Output242.5.1Extended Band D Transmit Spurious Emissions242.5.2Band E Transmit Spurious Emissions252.5.3Band F Transmit Spurious Emissions262.6MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions282.6.1Band ExD Transmit Spurious and Noise Emissions282.6.2Band E Transmit Spurious and Noise Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.6.4MoCA 2.0 Receiver Minimum Sensitivity302.7.1MoCA 2.0 Receiver Minimum Sensitivity302.7.2MoCA 2.5 Receiver Minimum Sensitivity322.8Coexistence with Other Signals332.8.1CATV and DOCSIS Susceptibility332.8.2Satellite Susceptibility342.9Sensitivity to Gated Noise in Bands E and F362.9Sensitivity to ATSC Interference372.10Non-Transmit Spurious and Noise Emissions382.10.1Extended Band D Non-Transmit Emissions382.10.2Band E Non-Transmit Emissions39		2.4.2		
2.5MoCA 2.0 RF Mode Transmitter Spurious Output242.5.1Extended Band D Transmit Spurious Emissions242.5.2Band E Transmit Spurious Emissions252.5.3Band F Transmit Spurious Emissions262.6MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions282.6.1Band ExD Transmit Spurious and Noise Emissions282.6.2Band E Transmit Spurious and Noise Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.6.3Band F Transmit Spurious Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.6.4MoCA 2.0 Receiver Minimum Sensitivity302.7.1MoCA 2.0 Receiver Minimum Sensitivity302.7.2MoCA 2.5 Receiver Minimum Sensitivity322.8Coexistence with Other Signals332.8.1CATV and DOCSIS Susceptibility332.8.2Satellite Susceptibility342.8.3Receiver Sensitivity to Gated Noise in Bands E and F362.9Sensitivity to ATSC Interference372.10Non-Transmit Spurious and Noise Emissions382.10.1Extended Band D Non-Transmit Emissions382.10.2Band E Non-Transmit Emissions39		2.4.3		
2.5.1Extended Band D Transmit Spurious Emissions242.5.2Band E Transmit Spurious Emissions252.5.3Band F Transmit Spurious Emissions262.6MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions282.6.1Band ExD Transmit Spurious and Noise Emissions282.6.2Band F Transmit Spurious and Noise Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.7Receiver Minimum Sensitivity302.7.1MoCA 2.0 Receiver Minimum Sensitivity302.7.2MoCA 2.5 Receiver Minimum Sensitivity322.8Coexistence with Other Signals332.8.1CATV and DOCSIS Susceptibility332.8.2Satellite Susceptibility342.8.3Receiver Sensitivity to Gated Noise in Bands E and F.362.9Sensitivity to ATSC Interference372.10Non-Transmit Spurious and Noise Emissions382.10.1Extended Band D Non-Transmit Emissions382.10.2Band E Non-Transmit Emissions39		2.4.4	4 MoCA 1 PHY Transmit Spectral Mask	
2.5.2Band E Transmit Spurious Emissions252.5.3Band F Transmit Spurious Emissions262.6MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions282.6.1Band ExD Transmit Spurious and Noise Emissions282.6.2Band E Transmit Spurious Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.7Receiver Minimum Sensitivity302.7.1MoCA 2.0 Receiver Minimum Sensitivity302.7.2MoCA 2.5 Receiver Minimum Sensitivity322.8Coexistence with Other Signals332.8.1CATV and DOCSIS Susceptibility332.8.2Satellite Susceptibility342.8.3Receiver Sensitivity to Gated Noise in Bands E and F362.9Sensitivity to ATSC Interference372.10Non-Transmit Spurious and Noise Emissions382.10.1Extended Band D Non-Transmit Emissions382.10.2Band E Non-Transmit Emissions39		2.5	MoCA 2.0 RF Mode Transmitter Spurious Output	
2.5.3Band F Transmit Spurious Emissions262.6MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions282.6.1Band ExD Transmit Spurious and Noise Emissions282.6.2Band E Transmit Spurious Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.7Receiver Minimum Sensitivity302.7.1MoCA 2.0 Receiver Minimum Sensitivity302.7.2MoCA 2.5 Receiver Minimum Sensitivity302.7.3Coexistence with Other Signals332.8Coexistence with Other Signals332.8.1CATV and DOCSIS Susceptibility332.8.2Satellite Susceptibility342.8.3Receiver Sensitivity to Gated Noise in Bands E and F362.9Sensitivity to ATSC Interference372.10Non-Transmit Spurious and Noise Emissions382.10.1Extended Band D Non-Transmit Emissions382.10.2Band E Non-Transmit Emissions39		2.5.1	Extended Band D Transmit Spurious Emissions	
2.6MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions282.6.1Band ExD Transmit Spurious and Noise Emissions282.6.2Band E Transmit Spurious Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.7Receiver Minimum Sensitivity302.7.1MoCA 2.0 Receiver Minimum Sensitivity302.7.2MoCA 2.5 Receiver Minimum Sensitivity322.8Coexistence with Other Signals332.8.1CATV and DOCSIS Susceptibility332.8.2Satellite Susceptibility342.8.3Receiver Sensitivity to Gated Noise in Bands E and F362.9Sensitivity to ATSC Interference372.10Non-Transmit Spurious and Noise Emissions382.10.1Extended Band D Non-Transmit Emissions382.10.2Band E Non-Transmit Emissions39		2.5.2	2 Band E Transmit Spurious Emissions	25
2.6.1Band ExD Transmit Spurious and Noise Emissions282.6.2Band E Transmit Spurious Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.6.3Receiver Minimum Sensitivity302.7Receiver Minimum Sensitivity302.7.1MoCA 2.0 Receiver Minimum Sensitivity302.7.2MoCA 2.5 Receiver Minimum Sensitivity302.8Coexistence with Other Signals332.8.1CATV and DOCSIS Susceptibility332.8.2Satellite Susceptibility342.8.3Receiver Sensitivity to Gated Noise in Bands E and F362.9Sensitivity to ATSC Interference372.10Non-Transmit Spurious and Noise Emissions382.10.1Extended Band D Non-Transmit Emissions382.10.2Band E Non-Transmit Emissions39			*	
2.6.2Band E Transmit Spurious Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.7Receiver Minimum Sensitivity302.7.1MoCA 2.0 Receiver Minimum Sensitivity302.7.2MoCA 2.5 Receiver Minimum Sensitivity322.8Coexistence with Other Signals332.8.1CATV and DOCSIS Susceptibility332.8.2Satellite Susceptibility342.8.3Receiver Sensitivity to Gated Noise in Bands E and F.362.9Sensitivity to ATSC Interference372.10Non-Transmit Spurious and Noise Emissions382.10.1Extended Band D Non-Transmit Emissions382.10.2Band E Non-Transmit Emissions39		2.6	MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions	
2.6.2Band E Transmit Spurious Emissions292.6.3Band F Transmit Spurious and Noise Emissions292.7Receiver Minimum Sensitivity302.7.1MoCA 2.0 Receiver Minimum Sensitivity302.7.2MoCA 2.5 Receiver Minimum Sensitivity322.8Coexistence with Other Signals332.8.1CATV and DOCSIS Susceptibility332.8.2Satellite Susceptibility342.8.3Receiver Sensitivity to Gated Noise in Bands E and F.362.9Sensitivity to ATSC Interference372.10Non-Transmit Spurious and Noise Emissions382.10.1Extended Band D Non-Transmit Emissions382.10.2Band E Non-Transmit Emissions39		2.6.1	Band ExD Transmit Spurious and Noise Emissions	28
2.6.3Band F Transmit Spurious and Noise Emissions.292.7Receiver Minimum Sensitivity302.7.1MoCA 2.0 Receiver Minimum Sensitivity302.7.2MoCA 2.5 Receiver Minimum Sensitivity322.8Coexistence with Other Signals.332.8.1CATV and DOCSIS Susceptibility.332.8.2Satellite Susceptibility342.8.3Receiver Sensitivity to Gated Noise in Bands E and F.362.9Sensitivity to ATSC Interference372.10Non-Transmit Spurious and Noise Emissions382.10.1Extended Band D Non-Transmit Emissions382.10.2Band E Non-Transmit Emissions39				
2.7Receiver Minimum Sensitivity302.7.1MoCA 2.0 Receiver Minimum Sensitivity302.7.2MoCA 2.5 Receiver Minimum Sensitivity322.8Coexistence with Other Signals332.8.1CATV and DOCSIS Susceptibility332.8.2Satellite Susceptibility342.8.3Receiver Sensitivity to Gated Noise in Bands E and F362.9Sensitivity to ATSC Interference372.10Non-Transmit Spurious and Noise Emissions382.10.1Extended Band D Non-Transmit Emissions39				
2.7.1MoCA 2.0 Receiver Minimum Sensitivity302.7.2MoCA 2.5 Receiver Minimum Sensitivity322.8Coexistence with Other Signals332.8.1CATV and DOCSIS Susceptibility332.8.2Satellite Susceptibility342.8.3Receiver Sensitivity to Gated Noise in Bands E and F.362.9Sensitivity to ATSC Interference372.10Non-Transmit Spurious and Noise Emissions382.10.1Extended Band D Non-Transmit Emissions382.10.2Band E Non-Transmit Emissions39				
2.7.2MoCA 2.5 Receiver Minimum Sensitivity322.8Coexistence with Other Signals332.8.1CATV and DOCSIS Susceptibility332.8.2Satellite Susceptibility342.8.3Receiver Sensitivity to Gated Noise in Bands E and F.362.9Sensitivity to ATSC Interference372.10Non-Transmit Spurious and Noise Emissions382.10.1Extended Band D Non-Transmit Emissions382.10.2Band E Non-Transmit Emissions39			-	
2.8Coexistence with Other Signals332.8.1CATV and DOCSIS Susceptibility332.8.2Satellite Susceptibility342.8.3Receiver Sensitivity to Gated Noise in Bands E and F.362.9Sensitivity to ATSC Interference372.10Non-Transmit Spurious and Noise Emissions382.10.1Extended Band D Non-Transmit Emissions382.10.2Band E Non-Transmit Emissions39				
2.8.1CATV and DOCSIS Susceptibility				
2.8.2Satellite Susceptibility				
2.8.3 Receiver Sensitivity to Gated Noise in Bands E and F				
2.9 Sensitivity to ATSC Interference .37 2.10 Non-Transmit Spurious and Noise Emissions .38 2.10.1 Extended Band D Non-Transmit Emissions .38 2.10.2 Band E Non-Transmit Emissions .39				
2.10 Non-Transmit Spurious and Noise Emissions				
 2.10.1 Extended Band D Non-Transmit Emissions		2.9	Sensitivity to AISC Interference	
2.10.2 Band E Non-Transmit Emissions		2.10	Non-Transmit Spurious and Noise Emissions	
		2.10	.1 Extended Band D Non-Transmit Emissions	
2.10.3 Band F Non-Transmit Emissions40		2.10	.2 Band E Non-Transmit Emissions	
		2.10	.3 Band F Non-Transmit Emissions	40

Figures

Figure 1-1: A Typical In-home MoCA Network	7
Figure 2-1. MoCA 2.0 Extended Band D Frequency Plan	9
Figure 2-2. MoCA 2.0 Extended Band D Frequency Plan – Independent Networks	9
Figure 2-3. MoCA 2.0 Band E Frequency Plan with Single or Bonded-Pair Channels Example	11
Figure 2-4. MoCA 2.0 Band FSAT Frequency Plan with Bonded-Pair Channels Example	12
Figure 2-5. MoCA 2.0 Band FCBL Frequency Plan with Bonded-Pair Channels Example	12
Figure 2-6. MoCA 2.5 Extended Band D Frequency Plan	
Figure 2-7. MoCA 2.5 Extended Band D With DOCSIS 3.1 Note	
Figure 2-8. MoCA 2.5 Band E Frequency Plan	
Figure 2-9. MoCA 2.5 Transmit Spectral Mask with the same TPC each channel, (for TPC Settings of 0 to	
Figure 2-10. MoCA 2 – Transmit Spectral Mask (for TPC Settings of -12 to 20)	
Figure 2-11. MoCA 2 – Bonded-Pair Channels – Tx Transmit Spectral Mask	20
Figure 2-12. MoCA 1 PHY Transmitter Spectral Mask - Signal at Lower Half of MoCA 2.0 Channel	
Figure 2-13. MoCA 1 PHY Transmitter Spectral Mask - Signal at Center of MoCA 2.0 Channel	
Figure 2-14. MoCA 1 PHY Transmitter Spectral Mask - Signal at Higher Half of MoCA 2.0 Channel	
Figure 2-15. Minimum Receiver Sensitivity in Band ExD	
Figure 2-16. Minimum Receiver Sensitivity in Bands E and F	
Figure 2-17. MoCA 2.5 Minimum Receiver Sensitivity	33

Tables

Table 1-1. Table of Abbreviations	
Table 2-1. Extended Band D Channel Frequencies	10
Table 2-2. Band E Channel Frequencies	11
Table 2-3. Band F Channel Frequencies	12
Table 2-4. MoCA 2.5 Extended Band D Channel Frequencies	13
Table 2-5. Band E Channel Frequencies	14
Table 2-6. Maximum Total Output	15
Table 2-7. Transmitter Spectral Mask Frequency Ranges	15
Table 2-8. MoCA 2.5 M _{Floor} Values	
Table 2-9. Transmitter Spectral Mask for TPC Settings of 0 to 30	17
Table 2-10. Transmitter Spectral Mask with the same TPC on each channel	17
Table 2-11. Allowed Spurious when Transmitting	18
Table 2-12. Transmitter Spectral Mask for TPC Settings of -12 to 45	18
Table 2-13. MoCA 1.0 PHY Transmitter Spectral Mask - Signal at Lower Half of MoCA 2.0 Channel	21
Table 2-14. MoCA 1 PHY Transmitter Spectral Mask - Signal at Center of MoCA 2.0 Channel	22
Table 2-15. MoCA 1 PHY Transmitter Spectral Mask - Signal at Higher Half of MoCA 2.0 Channel	
Table 2-16. MoCA 1 PHY Transmitter Spectral Mask for Probe Signals - Signal at Lower Half of MoCA 2.0 Channel	
Table 2-17. MoCA 1 PHY Transmitter Spectral Mask for Probe Signals - Signal at Center of MoCA 2.0 Channel	
Table 2-18. MoCA 1 PHY Transmitter Spectral Mask for Probe Signals - Signal at Higher Half of MoCA 2.0 Channel	24
Table 2-19. Extended Band D Transmitter Spurious Output	
Table 2-20. Band E Transmitter Spurious Output	
Table 2-21. Band FSAT Transmitter Spurious Output	
Table 2-22. Band FCBL Transmitter Spurious Output	
Table 2-23. Extended Band D Transmitter Spurious Output	
Table 2-24. Band E Transmitter Spurious Output	
Table 2-25. Band F _{SAT} Transmitter Spurious Output	
Table 2-26. Band F_{CBL} Transmitter Spurious Output	
Table 2-27. Minimum PHY Rate vs. Receive Power Level in Band ExD.	
Table 2-28. Minimum PHY Rate vs. Receive Power Level in Bands E and F	
Table 2-29. Minimum PHY Rate vs. Receive Power Level for Turbo Mode in Band ExD	
Table 2-30. Minimum PHY Rate vs. Receive Power Level for Turbo Mode in Bands E and F	
Table 2-31. MoCA 2.5 Minimum PHY Rate vs. Receive Power Level	
Table 2-32. CATV Signals Coexisting with Band ExD	
Table 2-33. CATV Signals Coexisting with Band FCBL	
Table 2-34. OSP Satellite Transponder Signal Level for Band E Devices	
Table 2-35. FSK Control Signal	
Table 2-36. Maximum Intermittent Power Levels at the Input to the Node	
Table 2-37. OSP Satellite Transponder Signal Level for Band FSAT Devices	
Table 2-38. DiSEqC [™] Control Signal	
Table 2-39. Maximum Intermittent Power Levels at the Input to the Node	
Table 2-40. UHF Analog Video Signal	
Table 2-41. Bands E and F Minimum PHY Rate vs. Receive Power Level with Gated Noise	
Table 2-42. ATSC Interference Maximum Time to Reform a Network	
Table 2-42. ATSC Interference Maximum Time to Rejoin a Network Table 2-43. ATSC Interference Maximum Time to Rejoin a Network	
Table 2-44. Extended Band D Non-Transmit Emissions Limits	
Table 2-44. Excluded Band D Non-Transmit Emissions Limits	
Table 2-46. Band FSAT Non-Transmit Emissions Limits	
Table 2-40. Band FCBL Non-Transmit Emissions Limits	
ratio 2 +7. Band r CDE ron- fransmit Emissions Emints	+0

1 MoCA 2.0/2.5 Specification - Introduction and Scope

1.1 Scope

This document summarizes several technical specifications for operation of Multimedia Over Coax Alliance (MoCA) 2.0 and 2.5 devices ("nodes") using in-home coaxial wiring for transport of multimedia content: MoCA Frequency Plan, Connector and Return Loss, Maximum Total Output Power, MoCA Transmitter Spectral Mask, MoCA 2.0 RF Mode Transmitter Spurious Output, Receiver Minimum Sensitivity, Coexistence with Other Signals, Sensitivity to ATSC Interference, and Non-Transmit Spurious and Noise Emissions.

1.2 Introduction

The MoCA system network model creates a coax network which supports communications between a convergence layer in one MoCA node to the corresponding convergence layer in another MoCA node. All MoCA 2.0 and 2.5 devices also comply with all of the specifications for MoCA 1.0 and 1.1 devices. When MoCA 1.0 or 1.1 devices are present in the same network as MoCA 2.0 and 2.5 devices, all communication between MoCA 1 devices and MoCA 2.0 and 2.5 devices uses MoCA 1 protocols. In the same network MoCA 2.0 and 2.5 devices communicate with other MoCA 2 devices using MoCA 2 protocols.

MoCA 2 MAC supersedes MoCA 1.1 with a set of new features. The new features improve MAC efficiency for higher throughput and overall system performance. MoCA 2 offers seamless interoperability with MoCA 1 legacy nodes. MoCA 2.5 adds new management features and PHY rates to MoCA 2.0.

1.3 Abbreviations

Term	Stands for			
ACMT	Adaptive Constellation Multi-tone			
ECL	Ethernet Convergence Layer			
FSK	Frequency Shift Keying			
ISDB-T	Integrated Services Digital Broadcasting Terrestrial			
LNB	Low Noise Block down-converter			
MAC	Media Access Control			
MoCA	Multimedia over Coax Alliance			
OSP	Operator-Service Provider			
PHY	Physical Layer			
RBW	Resolution Bandwidth			
SWM	Single Wire Multi-switch			
TPC	Transmit Power Control			
VBW	Video Bandwidth			

Table 1-1. Table of Abbreviations

1.4 Definitions

Bonded-PHY - A transmission mode where two MoCA 2.0 PHYs or two to five MoCA 2.5 PHYs are bonded under control by a single MAC.

Flat Channel – A MoCA channel with power magnitude variation of less than 4.5 dB and group-delay variation of less than 2 ns across any MoCA channel with no added noise, interference, or multipath.

1.5 Physical Network Model

Typical in-home coaxial networks are configured as a branching tree topology. The point of connection to the first splitter is called the Root Node. The MoCA nodes inside the home communicate with each other by having their signals traverse across one or more splitters. The signal path transmission between two MoCA nodes is the superposition of several individual paths. Each individual signal path may have a different magnitude and delay resulting in an aggregate signal path with frequency nulls, large attenuation, and significant delay spread. The MoCA Network will operate under these channel conditions.

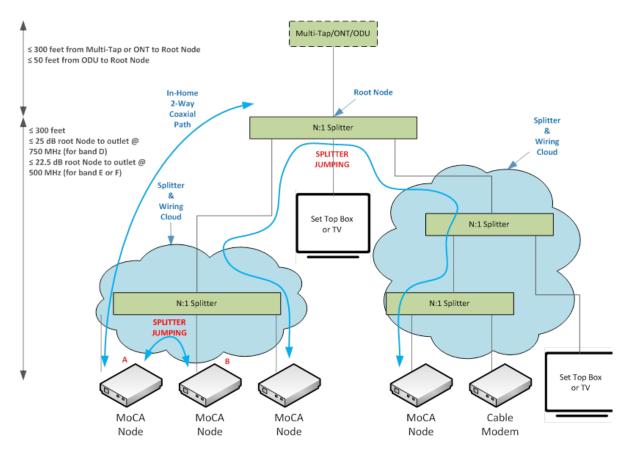


Figure 1-1: A Typical In-home MoCA Network

2 MoCA 2.0 and MoCA 2.5 Reference Specification

2.1 MoCA Frequency Plan

The following subsections define the bands of operation supported by the MoCA specification.

The specified requirements are referenced at the F-connector at the output of any filter required by the device for proper operation. A minimum network isolation of 9 dB (5 dB minimum splitter isolation + 4 dB minimum cable loss, representing a worst case condition) is assumed between the F-connector of MoCA 2.0 device and any other device on the network.

2.1.1 MoCA 2.0 Extended Band D Frequency Plan

This section specifies the frequency plan for MoCA 2.0 single and bonded-pair channels operation in extended band D (ExD). The extended band D is defined between 1125 MHz and 1675 MHz (550 MHz wide), and extends the high frequency of the existing MoCA 1 band D by 150 MHz. Primary Channels (100 MHz BW) in extended band D are centered on a 25 MHz grid. Bonded-pair channels (225 MHz BW) have a fixed 25 MHz gap between them and tune together as a block where both the Primary Channel and Secondary Channels are centered on the 25 MHz grid.

The MoCA 2.0 frequency plan defines, within the new extended band D, two sub-bands for independent network operation. These sub-bands comprise the D-low and D-high, as follows:

Sub-band D-Low (DL): 1125 to 1225 MHz edge to edge (100 MHz wide)

Sub-band D-High (DH): 1350 to 1675 MHz edge to edge (325 MHz wide)

Guard-band between sub-bands: 1225 to 1350 MHz (125 MHz wide)

Figure 2-1 illustrates the MoCA 2.0 frequency plan in extended band D when a single network is configured in the band. Figure 2-2 illustrates the MoCA 2.0 frequency plan in extended band D in order to support two MoCA Networks in the band. Table 2-1 specifies the allowed center frequencies of the Primary Channel, Secondary Channel, and Beacon Channel, in the extended band D as well as the center frequencies which apply to sub-bands D-Low and D-High.

This frequency plan provides for:

- Single channel or bonded-pair channels operation in extended band D
- Two independent networks on shared RF medium
 - Network 1: Single (non-bonded-pair) channel operating in sub-band D-Low
 - Network 2: Single channel or 2 bonded-pair channels in sub-band D-High
- Mixed Mode operation anywhere within the extended band D

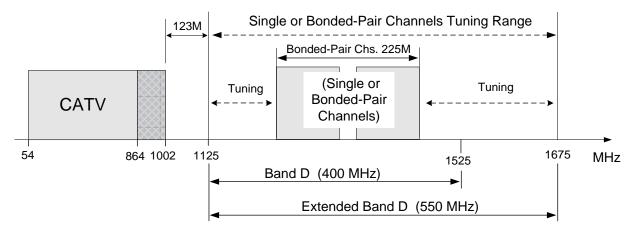


Figure 2-1. MoCA 2.0 Extended Band D Frequency Plan

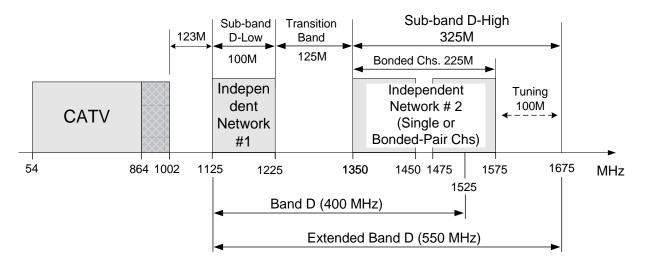


Figure 2-2. MoCA 2.0 Extended Band D Frequency Plan – Independent Networks

Frequency [MHz]	Channel #	MoCA 1.1 Channels	MoCA 2.0 Primary Channels	MoCA 2.0 Secondary Channels	Beacon Channels	D-Low / D-High
1150	D1	\checkmark			\checkmark	D-Low
1175	D1a		\checkmark	\checkmark		D-Low
1200	D2	\checkmark	\checkmark		\checkmark	D-Low
1225	D2a		\checkmark			
1250	D3		\checkmark		\checkmark	
1275	D3a		\checkmark			
1300	D4		\checkmark		\checkmark	
1325	D4a		\checkmark			
1350	D5		\checkmark		\checkmark	
1375	D5a		\checkmark			
1400	D6		\checkmark		\checkmark	D-High
1425	D6a		\checkmark			D-High
1450	D7		\checkmark		\checkmark	D-High
1475	D7a		\checkmark			D-High
1500	D8		\checkmark		\checkmark	D-High
1525	D8a		\checkmark			D-High
1550	D9		\checkmark		\checkmark	D-High
1575	D9a		\checkmark			D-High
1600	D10		\checkmark		\checkmark	D-High
1625	D10a		\checkmark			D-High

Table 2-1. Extended Band D Channel Frequencies

2.1.2 MoCA 2.0 Band E Frequency Plan

This section specifies the frequency plan for MoCA 2.0 single and bonded-pair channels operation in Band E. Band E is defined between frequencies 400 MHz and 700 MHz (300 MHz wide).

MoCA 2.0 single channels (100 MHz BW) are centered on a 25 MHz grid and can tune in 25 MHz increments. Bonded-pair channels (225 MHz BW) have a fixed 25 MHz gap between them where both the Primary Channel and Secondary Channels are centered on the 25 MHz grid.

This frequency plan enables:

- MoCA 2.0 single channel or bonded-pair channels operation in Band E
- Mixed-mode operation (MoCA 1/MoCA 2.0) in Band E

Figure 2-3 illustrates the MoCA 2.0 frequency plan in Band E with bonded pair channels example. The MoCA 2.0 center channel frequencies (and the MoCA 1.1 channels for reference) are defined in Table 2-2.

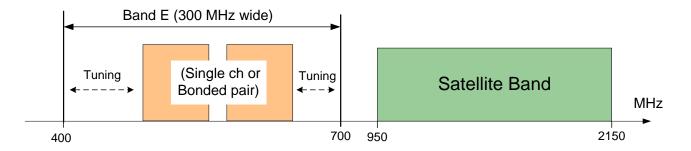


Figure 2-3. MoCA 2.0 Band E Frequency Plan with Single or Bonded-Pair Channels Example

Center Frequency	Channel #	MoCA 1.1 Channels	MoCA 2.0 Primary	MoCA 2.0 Secondary	Beacon Channels
[MHz]	π	Channels	Channels	Channels	Channels
450	EE1			\checkmark	
475	EE2			\checkmark	
500	E1	\checkmark		\checkmark	\checkmark
525	E2	\checkmark	\checkmark		\checkmark
550	E3	\checkmark	\checkmark		\checkmark
575	E4	\checkmark	\checkmark		\checkmark
600	E5	\checkmark	\checkmark		\checkmark
625	EE3		\checkmark		
650	EE4				

Table 2-2. Band E Channel Frequencies

2.1.3 MoCA 2.0 Band F Frequency Plan

This section specifies the frequency plan for MoCA 2.0 single and bonded-pair channels operation in Band F. The Band F is defined between frequencies 650 MHz and 875 MHz (225 MHz wide). This band comprises of two bands F_{SAT} and F_{CBL} , both having the same channel plan but differ in some of the other requirements. For the purpose of this specification, whenever a requirement refers to band F the requirement applies to both F_{SAT} and F_{CBL} . All requirements which are specific to one of the two bands will indicate the specific band to which they apply.

MoCA 2.0 single channels (100 MHz BW) are centered on a 25 MHz grid and can tune in 25 MHz increments. Bonded-pair channels (225 MHz BW) have a fixed 25 MHz gap between them where both the primary channel and secondary channels are centered on the 25 MHz grid.

This frequency plan enables:

- MoCA 2.0 single channel or bonded-pair channels operation in Band F
- Mixed-mode operation (MoCA 1/MoCA 2.0) in Band F

Figure 2-4 and Figure 2-5 illustrate the MoCA 2.0 frequency plan in bands F_{SAT} and F_{CBL} respectfully with bonded pair channels example. The band F MoCA 2.0 center channel frequencies (and the MoCA 1.1 channels for reference) are defined in Table 2-3.

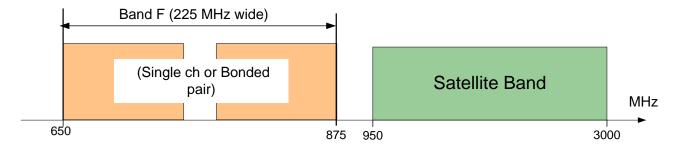


Figure 2-4. MoCA 2.0 Band FSAT Frequency Plan with Bonded-Pair Channels Example

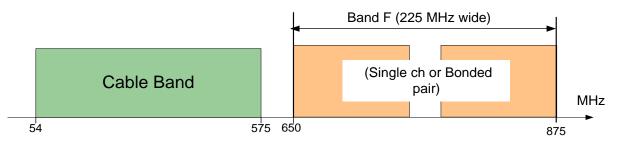


Figure 2-5. MoCA 2.0 Band FCBL Frequency Plan with Bonded-Pair Channels Example

Center Frequency [MHz]	Channel #	MoCA 1.1 Channels	MoCA 2.0 Primary Channels	MoCA 2.0 Secondary Channels	Beacon Channels
675	F1	\checkmark			\checkmark
700	F2	\checkmark	\checkmark	\checkmark	\checkmark
725	F3	\checkmark	\checkmark		
750	F4	\checkmark	\checkmark		
775	F5	\checkmark	\checkmark		
800	F6	\checkmark	\checkmark		
825	F7	\checkmark	\checkmark	\checkmark	\checkmark
850	F8				

Table 2-3. Band F Channel Frequencies

2.1.4 MoCA 2.5 Extended Band D Frequency Plan

This section specifies the frequency plan for a Node operating with MoCA 2.5 PHY in extended band D (ExD).

Figure 2-6 illustrates the MoCA 2.5 frequency plan in extended band D. Figure 2-7 illustrates an example MoCA 2.5 deployment with a higher frequency DOCSIS signal allowed by DOCSIS 3.1; 1194 MHz is shown with 1218 MHz marking the edge of DOCSIS3.1. Note that the transition band between DOCSIS 3.1 and MoCA 2.5 will require careful engineering and filtering to avoid interference.

Table 2-4 specifies the allowed center frequencies of each 100 MHz bonded channel.

As shown in Table 2-4, three, four or five contiguous 100 MHz bonded channels may be located within the 550 MHz ExD frequency range. When only 4 contiguous channels are used, Channel 5 is not used and when only 3 contiguous channels are used, both Channels 4 and 5 are not used.

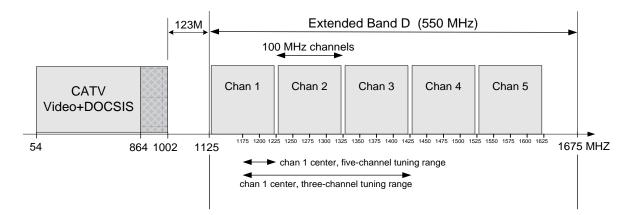


Figure 2-6. MoCA 2.5 Extended Band D Frequency Plan

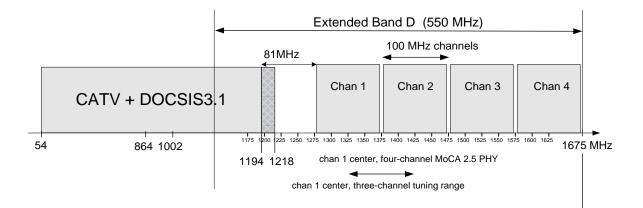


Figure 2-7. MoCA 2.5 Extended Band D With DOCSIS 3.1 Note

MoCA 2.5	1 st Channel	2 nd Channel	3 rd Channel	4 th Channel	5 th Channel
channel	center	center	center	center	center
				(if used)	(if used)
D2p5-1	1175	1275	1375	1475	1575
D2p5-2	1200	1300	1400	1500	1600
D2p5-3	1225	1325	1425	1525	1625
D2p5-4	1250	1350	1450	1550	-
D2p5-5	1275	1375	1475	1575	-
D2p5-6	1300	1400	1500	1600	-
D2p5-7	1325	1425	1525	1625	-
D2p5-8	1350	1450	1550	-	-
D2p5-9	1375	1475	1575	-	-
D2p5-10	1400	1500	1600	-	-
D2p5-11	1425	1525	1625	-	-

Table 2-4. MoCA 2.5 Extended Band D Channel Frequencies

2.1.5 MoCA 2.5 Band E Frequency Plan

This section specifies the frequency plan for a Node operating with MoCA 2.5 PHY with 3 bonded channels in Band E.

Figure 2-8 illustrates the MoCA 2.5 frequency plan in Band E. The MoCA 2.5 center channel frequencies are defined in Table 2-5.

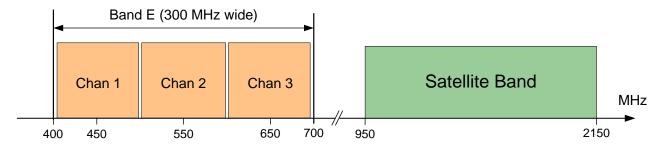


Figure 2-8. MoCA 2.5 Band E Frequency Plan

MoCA 2.5 channel	Chan. 1 center	Chan. 2 center	Chan. 3 center	
E2p5-1	450	550	650	

Table 2-5. Band E Channel Frequencies

2.2 Connector and Return Loss

The Transmit Mode return loss, measured at the F connector, MUST be ≥ 5 dB when operating in band ExD or sub-bands D-Low and D-High, and MUST be ≥ 8 dB when operating in band E or band F, relative to 75 ohm measured across fc ± 47.5 MHz. For bonded-pair channel this requirement applies to both the primary and Secondary Channels. The Transmit Mode return loss of a Node MUST remain within a 4 dB range over any time window of 20 minutes except during times when the return loss is > 15 dB. The Transmit Mode return loss of a Node MUST remain within a 2 dB range for any given Transmit Backoff setting, over any time window of 20 minutes except during times is > 15 dB.

2.3 Maximum Total Output Power

When transmitting in MoCA 1 PHY, MoCA 2.0 PHY, Bonded-PHY, or MoCA 2.5 PHY, a Node MUST have a maximum per channel output power and maximum total output power as shown in Table 2-6. The maximum output power per channel MUST be supported on every MoCA channel frequency of operation.

Transmitting Mode	Number Channels Transmitted	BW per channel (MHz)	Maximum Output Power per Channel	Total Output Power of all transmitted channels
MoCA Beacon	1	50	-1 dBm to $+7$ dBm	-1 dBm to +7 dBm
MoCA 1 PHY	1	50	-1 dBm to +7 dBm	-1 dBm to +7 dBm
MoCA 2.0 PHY	1	100	-1 dBm to +7 dBm	-1 dBm to +7 dBm
MoCA 2.0 Bonded-PHY	2	100	-1 dBm to +7 dBm	+2 dBm to +10 dBm
MoCA 2.5 Bonded-PHY	2	100	-3 dBm to +5 dBm	0 dBm to +8 dBm
MoCA 2.5 PHY	3	100	-4.5 dBm to +3.5 dBm	+0.3 dBm to +8.3 dBm
MoCA 2.5 PHY	4	100	-5.3 dBm to +2.7 dBm	+0.7 dBm to +8.7 dBm
MoCA 2.5 PHY	5	100	-6 dBm to +2 dBm	+1 dBm to $+9$ dBm

Table 2-6. Maximum Total Output

All transmit power is measured into a 75 ohm load.

2.4 MoCA Transmitter Spectral Mask

The following subsections define the spectral mask requirements for transmissions using MoCA 2.5 PHY, MoCA 2.0 PHY, Bonded-PHY, and MoCA 1 PHY. The spectral mask requirements stated in the following subsection apply for each MoCA band of operation in the frequency ranges specified in Table 2-7.

MoCA Band	Frequency Range
ExD, D-Low, D-High	1002 MHz < f < 2150 MHz
E	4 MHz < f < 900 MHz
F _{SAT}	600 MHz < f < 925 MHz
F _{CBL}	600 MHz < f < 2150 MHz

Table 2-7. Transmitter Spectral Mask Frequency Ranges

2.4.1 MoCA 2.5 PHY Transmit Spectral Mask and Spurious

All transmitter performance specifications in this section apply at the F-connector. The terms used in this section are as follows:

TPC has a range of 0 to 30 dB for OFDM and -12 to 30 dB for OFDMA.

fc represents the center frequency of a MoCA 2.0 PHY transmission.

fc₀ represents the center frequency of a MoCA 1 PHY transmission Beacon Channel

fc₁ represents the center frequency of the lower of the two MoCA 2.0 PHYs constructing a Bonded-PHY Primary Channel or Secondary Channel

fc₂ represents the center frequency of the higher of the two MoCA 2.0 PHYs constructing a Bonded-PHY Primary Channel or Secondary Channel

Fc_P represents the center frequency of the Bonded-PHY Primary Channel

fc_s represents the center frequency of the Bonded-PHY Secondary Channel

fc_{min} and fc_{max} are defined as follows:

If MoCA 2.5 PHY transmissions are used between any nodes in the MoCA network:

 $fc_{min} = center frequency of the First Channel$

 fc_{max} = center frequency of the highest used channel, either Third Channel, Fourth Channel, or Fifth Channel

If MoCA 2.5 PHY transmissions are not used between any nodes and Bonded_PHY transmissions are used between any nodes in the MoCA network:

$$fc_{min} = fc_1$$

 $fc_{max} = fc_2$

If MoCA 2.5 PHY and Bonded_PHY transmissions are not used between any nodes in the network and MoCA 2.0 PHY is used between any nodes in the MoCA network:

 $fc_{min} = fc_{max} = fc$

If only MoCA 1 PHY is used between all nodes in the MoCA network:

 $fc_{min} = fc_0 + 20 \text{ MHz}$ $fc_{max} = fc_0 - 20 \text{ MHz}$

The output spectrum from the Node when transmitting with MoCA 2.5 PHY at any TPC setting MUST conform to the mask per Table 2-9. M_{55} and M_{125} are defined as follows:

 $M_{55} \equiv -38 dBr$

 $M_{125} \equiv -M_{Floor} + 0.25[TPC_{MIN} - 20 + |TPC_{MIN} - 20|] dBr$

where TPC_{MIN} is is the lowest TPC setting of any 100 MHz MoCA 2.5 bonded channel in use and M_{Floor} is a function of NUM_OF_CHANNELS as shown in Table 2-8.

NUM_OF_CHANNELS	M _{Floor}
3	45.5
4	44.6
5	44.0

Table 2-8. MoCA 2.5 M_{Floor} Values

Frequency Range	Output	
$fc_{min} - 50 \text{ MHz} \le f \le fc_{max} + 50 \text{ MHz}$	< 0 dBr	
$fc_{min} - 55 \text{ MHz} \le f \le fc_{min} - 50 \text{ MHz}$	Linear slope from M ₅₅ to -20 dBr	
$fc_{max} + 50 \text{ MHz} \le f \le fc_{max} + 55 \text{ MHz}$	Linear slope from -20 dBr to M ₅₅	
$fc_{min} - 125 \text{ MHz} \le f \le fc_{min} - 55 \text{ MHz}$	Linear slope from M_{125} to M_{55}	
$fc_{max} + 55 \text{ MHz} \le f \le fc_{max} + 125 \text{ MHz}$	Linear slope from M_{55} to M_{125}	
$f < fc_{min} - 125 MHz$	\leq M ₁₂₅	
$f > fc_{max} + 125 \text{ MHz}$	\leq M ₁₂₅	

Table 2-9. Transmitter Spectral Mask for TPC Settings of 0 to 30

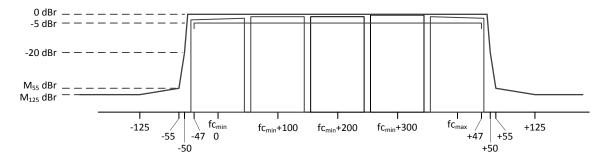

In addition to the requirements in Table 2-9, the output spectrum from the Node when TPC is the same on each channel MUST conform to the mask in Table 2-10.

Table 2-10. Transmitter Spectral Mask with the same TPC on each channel

Frequency Range	Output
$fc_{min} - 47 \text{ MHz} \le f \le fc_{max} + 47 \text{ MHz}$	-5 dBr to 0 dBr *

* For any unused subcarrier, the lower bound is not applicable and the output MUST be ≤ 0 dBr.

Figure 2-9 illustrates the required spectrum when the same TPC is set on each channel, for TPC settings of 0 to 20.

Figure 2-9. MoCA 2.5 Transmit Spectral Mask with the same TPC each channel, (for TPC Settings of 0 to 20)

When a transmitter is turned on for transmission in MoCA 2.5 PHY mode and PHY-frames are not yet being transmitted, in each of the 100 MHz bonded channels the transmitted output power MUST be less than -39 dBc relative to the transmitted power when the ACMT carriers are turned-on except for the allowed spurious in Table 2-11.

When a transmitter is turned on for transmission in MoCA 2.5 PHY mode and PHY-frames are being transmitted the transmitter output MUST not have any spurious output except for the allowed spurious in Table 2-11.

Frequency Range	Maximum Value	Notes
At all $f = k \times 50 MHz$	-80 dBm	Spurious allowed at every
Where k is any integer > 1		frequency

Table 2-11. Allowed Spurious when Transmitting

2.4.2 MoCA 2.0 PHY Transmit Spectral Mask and Spurious

The spectrum at the F-connector from the Node when using MoCA 2.0 PHY at any TPC setting in both OFDM and OFDMA transmissions MUST conform to the mask per Table 2-12, where fc represents the center frequency of the transmitted signal and M_{55} and M_{125} are defined as follows:

$$\begin{split} M_{55} &\equiv -40 + 0.25 [\text{TPC-}30 + |\text{TPC-}30|] + 0.25 [\text{TPC-}40 + |\text{TPC-}40|] \ dBr \\ M_{125} &\equiv -50 + 0.25 [\text{TPC-}20 + |\text{TPC-}20|] + 0.25 [\text{TPC-}30 + |\text{TPC-}30|] \ dBr \end{split}$$

where TPC is the transmitter TPC setting (in dB).

Figure 2-10 illustrates the required spectrum for TPC settings of -12 to 20. The spectral mask from fc-150 MHz to fc+150 MHz SHOULD be measured with the spectrum analyzer set to RBW = 300 kHz, VBW = 3 kHz, Sweep = Cont, Sweep Time = Auto. Video Averaging = On (100 traces), and Span = 300 MHz. The measured peak power of the MoCA transmitter spectral profile on the spectrum analyzer is the 0 dBr value. The spectral mask below fc-150 MHz and above fc+150 MHz SHOULD be measured with the spectrum analyzer set to RBW=2MHz, VBW = 10 kHz, Sweep = Cont, Sweep Time = Auto, Video Averaging = off, and the following start and stop frequencies (where applicable) for the band of operation:

- Start freq = the low edge of the frequency range in Table 2-7, stop freq = fc 150 MHz
- Start freq = fc + 150 MHz, stop freq = the high edge of the frequency range in Table 2-7

Table 2-12. Transmitter Spectral Mask for TPC Settings of -12 to 45

Frequency Range	Output
$fc - 0.931 \text{ MHz} \le f \le fc + 0.931 \text{ MHz}$	$\leq 0 \text{ dBr}$
$fc - 21.5 \text{ MHz} \le f \le fc - 0.931 \text{ MHz}$	$-3 \text{ dBr to } 0 \text{ dBr }^*$
$fc + 0.931 \text{ MHz} \le f \le fc + 21.5 \text{ MHz}$	$-3 \text{ dBr to } 0 \text{ dBr }^*$
$fc - 47 MHz \le f \le fc - 21.5 MHz$	$-4 \text{ dBr to } 0 \text{ dBr }^*$
$fc + 21.5 MHz \le f \le fc + 47 MHz$	$-4 \text{ dBr to } 0 \text{ dBr }^*$
$fc - 50 \text{ MHz} \le f \le fc - 47 \text{ MHz}$	< 0 dBr
$fc + 47 \text{ MHz} \le f \le fc + 50 \text{ MHz}$	< 0 dBr
fc - 55 MHz \leq f \leq fc - 50 MHz	Linear slope from M ₅₅ to -20 dBr
$fc + 50 MHz \le f \le fc + 55 MHz$	Linear slope from -20 dBr to M ₅₅
fc - 125 MHz \leq f \leq fc - 55 MHz	Linear slope from M ₁₂₅ to M ₅₅
$fc + 55 MHz \le f \le fc + 125 MHz$	Linear slope from M ₅₅ to M ₁₂₅
f< fc - 125 MHz	M ₁₂₅
fc + 125 MHz < f	M ₁₂₅

* For any unused subcarrier, the lower bound is not applicable and the output MUST be $\leq 0 dBr$.

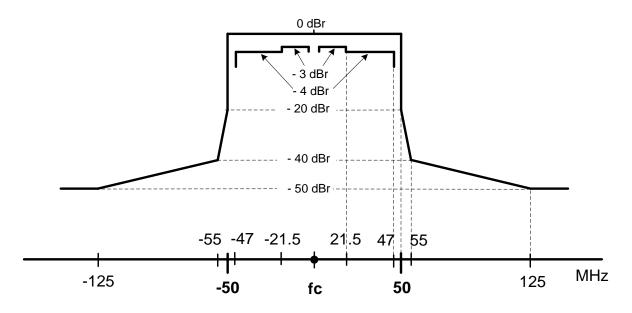


Figure 2-10. MoCA 2 – Transmit Spectral Mask (for TPC Settings of -12 to 20)

At 75 MHz offset from center (i.e. 25 MHz from the edge of the channel), the skirts of the mask are at approximately -43 dBr, sufficiently low to allow the placement of the bonded-pair channel edge at that frequency, as shown in Figure 2-11.

When a transmitter is turned on for transmission in MoCA 2.0 PHY mode and PHY-frames are not yet being transmitted, the transmitted output power MUST be less than -39 dBc relative to the transmitted power when the ACMT carriers are turned-on, excluding one of the following two spurious conditions:

- A spurious at fc with relative power of less than -23 dBc relative to the transmitted power when the ACMT carriers are turned-on
- When SECONDARY_CHANNEL_OFFSET \neq 0b00: A spurious at fc₁+62.5 MHz with relative power of less than -23 dBc relative to the transmitted power when the ACMT carriers are turned-on

2.4.3 Bonded-PHY Transmit Spectral Mask

The spectrum at the F-connector from the Node when transmitting in Bonded-PHY MUST conform to the specification in Section 2.4.2 as shown in Figure 2-10 for both the Primary Channel and Secondary Channel. The combination of the spectral masks of the two Bonded-PHY channels when transmitting with the same TPC setting is shown in Figure 2-11:

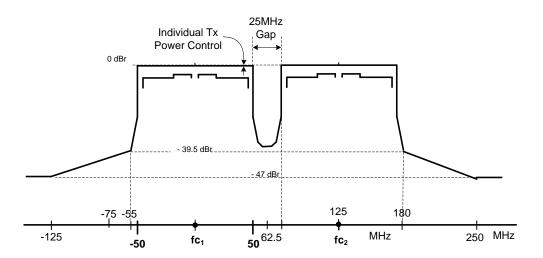


Figure 2-11. MoCA 2 – Bonded-Pair Channels – Tx Transmit Spectral Mask

The separation between the two Bonded-PHY channels MUST be 25 MHz, as shown in Figure 2-11.

When a transmitter is turned on for transmission in Bonded-PHY mode and PHY-frames are not yet being transmitted, the transmitted output power MUST be less than -39 dBc relative to the transmitted power when the sub carriers are turned on excluding one of the following two spurious conditions:

- A spurious at fc_1 with relative power of less than -23 dBc relative to the total power of the channel centered at fc_1 and a spurious at fc_2 with relative power of less than -23 dBc relative to the total power of the channel centered at fc_2
- A single spurious at $fc_1+62.5$ MHz with relative power of less than -23 dBc relative to the higher of (1) the total power of the channel centered at fc_1 and (2) the total power of the channel centered at fc_2 .

A transmit level pre-equalization, or power offset, is required to assist the receiver in handling the effects of the network frequency response profile causing adjacent channel power inequality at the receiver input. By offsetting the transmit levels (e.g. by means of individual transmit power control) at the transmitter side, the received levels of the two channels are equalized, reducing the receiver dynamic range requirement.

Bonded-PHY transmitters MUST be capable of establishing an average output power differential between the primary and Secondary Channels of at least 6dB. This capability MUST be supported anywhere within the supported backoff range of the transmitter.

2.4.4 MoCA 1 PHY Transmit Spectral Mask

The following subsections define the spectral mask requirements for a Node operating in a Mixed Mode network, when transmitting in MoCA 1 PHY. fc_0 is defined as the center frequency of the MoCA 1 PHY transmission.

2.4.4.1 Data and frequency-domain probes

The spectrum at the F-connector from the MoCA transmitter when transmitting in MoCA 1 mode MUST conform to the following spectral mask:

- If the MoCA 1 PHY transmission is at the lower half of the 100 MHz-wide MoCA 2.0 channel then the spectrum MUST conform to the spectral mask per Table 2-13 and Figure 2-12.
- If the MoCA 1 PHY transmission is at the center of the 100 MHz-wide MoCA 2.0 channel then the spectrum MUST conform to the spectral mask per Table 2-14 and Figure 2-13.

• If the MoCA 1 PHY transmission is at the higher half of the 100 MHz-wide MoCA 2.0 channel then the spectrum MUST conform to the spectral mask per Table 2-15 and Figure 2-14.

The spectral mask from $f_{c_0}-150$ MHz to $f_{c_0}+150$ MHz SHOULD be measured with the spectrum analyzer set to RBW = 300 kHz, VBW = 3 kHz, Sweep = Continuous, Sweep Time = 300 ms, Video Averaging = On (100 traces), and Span = 100 MHz. The measured peak power of the MoCA transmitter spectral profile on the spectrum analyzer, when transmitting in MoCA 1 PHY mode, is the 0 dBr value. The spectral mask below $f_{c_0}-150$ MHz and above $f_{c_0}+150$ MHz SHOULD be measured with the spectrum analyzer set to RBW=2MHz, VBW = 10 kHz, Video Averaging = off, Sweep = Continuous, Sweep Time = 100 ms, and the following start and stop frequencies (where applicable) for the band of operation:

- Start freq = the low edge of the frequency range in Table 2-7, stop freq = fc_0 -150 MHz
- Start freq = fc_0+150 MHz, stop freq = the high edge of the frequency range in Table 2-7

Frequency Range	Output
$fc_0 - 21.5 \text{ MHz} \le f \le fc_0 - 0.931 \text{ MHz}$	$-3 \mathrm{dBr}$ to $0 \mathrm{dBr}^*$
$fc_0 + 0.931 \text{ MHz} \le f \le fc_0 + 21.5 \text{ MHz}$	$-3 \mathrm{dBr}$ to $0 \mathrm{dBr}^*$
$fc_0 + 25 \text{ MHz} \le f \le fc_0 + 30 \text{ MHz}$	< -20 dBr
$fc_0 - 30 \text{ MHz} \le f \le fc_0 - 25 \text{ MHz}$	< -20 dBr
$fc_0 + 30 \text{ MHz} < f$	< -30 dBr
$f < fc_0 - 30 MHz$	< -40 dBr
$fc_0 + 75 MHz < f$	< -45 dBr
$f < fc_0 - 50 MHz$	< -45 dBr

Table 2-13. MoCA 1.0 PHY Transmitter Spectral Mask - Signal at Lower Half of MoCA 2.0 Channel

* For any unused subcarrier, the lower bound is not applicable and the output MUST be ≤ 0 dBr

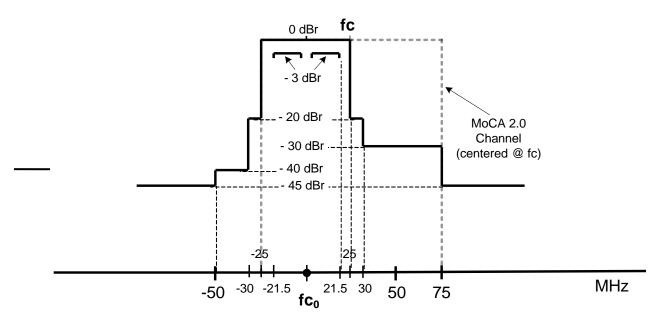


Figure 2-12. MoCA 1 PHY Transmitter Spectral Mask - Signal at Lower Half of MoCA 2.0 Channel

Frequency Range	Output
$fc_0 - 21.5$ MHz to $fc_0 - 0.931$ MHz	-3 dBr to 0 dBr [*]
$fc_0 + 0.931$ MHz to $fc_0 + 21.5$ MHz	$-3 \mathrm{dBr} \mathrm{to} 0 \mathrm{dBr}^*$
$fc_0 + 25$ MHz to $fc_0 + 30$ MHz	< -20 dBr
$fc_0 - 30$ MHz to $fc_0 - 25$ MHz	< -20 dBr
$> fc_0 + 30 \text{ MHz}$	< -30 dBr
$< fc_0 - 30 MHz$	< -30 dBr
$> fc_0 + 50 \text{ MHz}$	< -45 dBr
$< fc_0 - 50 MHz$	< -45 dBr

Table 2-14. MoCA 1 PHY Transmitter Spectral Mask - Signal at Center of MoCA 2.0 Channel

* For any unused subcarrier, the lower bound is not applicable and the output MUST be ≤ 0 dBr

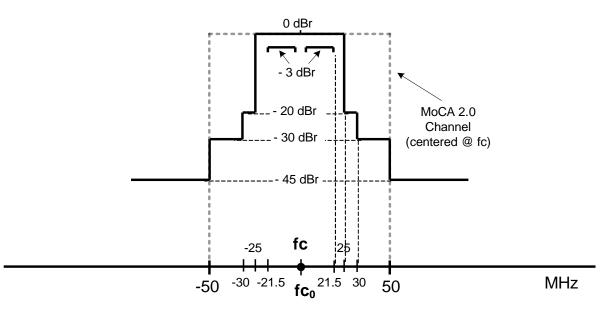


Figure 2-13. MoCA 1 PHY Transmitter Spectral Mask - Signal at Center of MoCA 2.0 Channel

Table 2-15. MoCA 1 PHY Transmitter Spectral Mask - Signal at Higher Half of MoCA 2.0 Channel

Frequency Range	Output
$fc_0 - 21.5 \text{ MHz} \le f \le fc_0 - 0.931 \text{ MHz}$	$-3 \text{ dBr to } 0 \text{ dBr}^*$
$fc_0 + 0.931 \text{ MHz} \le f \le fc_0 + 21.5 \text{ MHz}$	$-3 \mathrm{dBr}$ to $0 \mathrm{dBr}^*$
$fc_0 + 25 \text{ MHz} \le f \le fc_0 + 30 \text{ MHz}$	< -20 dBr
$fc_0 - 30 \text{ MHz} \le f \le fc_0 - 25 \text{ MHz}$	< -20 dBr
$fc_0 + 30 \text{ MHz} < f$	< -40 dBr
$f < fc_0 - 30 MHz$	< -30 dBr
$fc_0 + 50 \text{ MHz} < f$	< -45 dBr
$f < fc_0 - 75 MHz$	< -45 dBr

* For any unused subcarrier, the lower bound is not applicable and the output MUST be ≤ 0 dBr

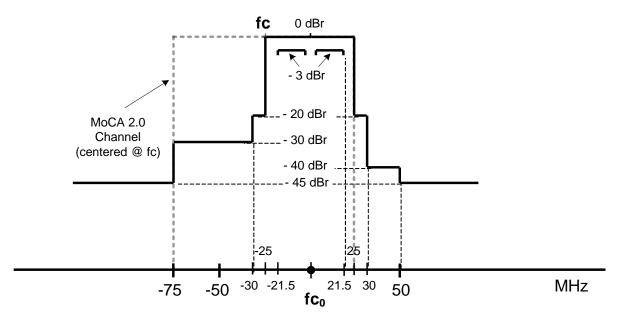


Figure 2-14. MoCA 1 PHY Transmitter Spectral Mask - Signal at Higher Half of MoCA 2.0 Channel

When a MoCA transmitter is turned on for transmission in MoCA 1 PHY mode and PHY-frames are not yet being transmitted, the transmitted output power MUST be less than -39 dBc relative to the transmitted power when the ACMT carriers are turned-on excluding the following two allowed spurious outputs:

- A single spurious at fc_0 with relative power of less than -23 dBc
- A single spurious at either fc_0+25 MHz or fc_0-25 MHz with relative power of less than -39 dBc appearing not earlier than when the transmitter is turned on and with a relative power of less than -35 dBc not earlier than 1.5 µsec before the first symbol has reached 90% of its final value.

2.4.4.2 Time-domain probes

When MoCA 1 time-domain probes are transmitted, the spectrum at the F-connector from the MoCA transmitter MUST conform to the following spectral mask:

- If the MoCA 1 PHY transmission is at the lower half of the 100 MHz-wide MoCA 2.0 channel then the spectrum MUST conform to the spectral mask per Table 2-16.
- If the MoCA 1 PHY transmission is at the center of the 100 MHz-wide MoCA 2.0 channel then the spectrum MUST conform to the spectral mask per Table 2-17.
- If the MoCA 1 PHY transmission is at the higher half of the 100 MHz-wide MoCA 2.0 channel then the spectrum MUST conform to the spectral mask Table 2-18.

Where the Relative Signal Power is the signal power measured in 300 kHz bandwidth and it is relative to the total integrated signal power (measured using a power meter). The total integrated signal power is equivalent to the 0 dBc value.

Frequency Range	Relative Signal Power
$fc_0 + 27 \text{ MHz} < f$	<-43.8 dBc
$f < fc_0 - 27 MHz$	<-43.8 dBc
$fc_0 + 28 MHz < f$	<-51.8 dBc
$f < fc_0 - 28 MHz$	< - 61.8 dBc
$fc_0 + 75 MHz < f$	< - 66.8 dBc
$f < fc_0 - 50 MHz$	< - 66.8 dBc

Table 2-16. MoCA 1 PHY Transmitter Spectral Mask for Probe Signals - Signal at Lower Half of MoCA 2.0 Channel

Table 2-17. MoCA 1 PHY Transmitter Spectral Mask for Probe Signals - Signal at Center of MoCA 2.0 Channel

Frequency Range	Relative Signal Power
$fc_0 + 27 MHz < f$	<-43.8 dBc
$f < fc_0 - 27 MHz$	<-43.8 dBc
$fc_0 + 28 MHz < f$	<-51.8 dBc
$f < fc_0 - 28 MHz$	< - 51.8 dBc
$fc_0 + 50 MHz < f$	< - 66.8 dBc
$f < fc_0 - 50 MHz$	< - 66.8 dBc

Table 2-18. MoCA 1 PHY Transmitter Spectral Mask for Probe Signals - Signal at Higher Half of MoCA 2.0 Channel

Frequency Range	Relative Signal Power
$fc_0 + 27 MHz < f$	< - 43.8 dBc
$f < fc_0 - 27 MHz$	< - 43.8 dBc
$fc_0 + 28 MHz < f$	< - 61.8 dBc
$f < fc_0 - 28 MHz$	< - 51.8 dBc
$fc_0 + 50 MHz < f$	< - 68.8 dBc
$f < fc_0 - 75 MHz$	< - 68.8 dBc

2.5 MoCA 2.0 RF Mode Transmitter Spurious Output

2.5.1 Extended Band D Transmit Spurious Emissions

The spurious signals at the output F-connector of a Node operating in extended band D (ExD, D-Low, or D-High) MUST conform to Table 2-19. Unless otherwise stated the requirements in Table 2-16 apply to transmissions in any of the modes (MoCA 2.0 PHY, Bonded-PHY, or MoCA 1 PHY).

Parameter	Frequency Range	Maximum Value*	Notes
Spurious at fc when transmitting in MoCA 2.0 PHY	fc or fc ₁ +62.5 MHz	-23 dBc	The spurious at $fc_1+62.5$ MHz is only allowed when SECONDARY_CHANNEL_OFFSET $\neq 0b00$
Spurious at fc when transmitting in Bonded-PHY	(fc ₁ and fc ₂) or fc ₁ +62.5 MHz	-23 dBc	When the spurious are at fc_1 and fc_2 : A spurious at fc_1 with power relative to the total power of the channel centered at fc_1 and a spurious at fc_2 with power relative to the total power of the channel centered at fc_2 When the spurious is at $fc_1+62.5$ MHz: the power of the spurious is relative to the higher of (1) the total power of the channel centered at fc_1 and (2) the total power of the channel centered at fc_2 .
Spurious at fc ₀ when transmitting in MoCA 1 PHY	fc_0 or fc or $fc_1+62.5$ MHz	-23 dBc	The spurious at $fc_1+62.5$ MHz is only allowed when SECONDARY_CHANNEL_OFFSET $\neq 0b00$
Spurious and noise	$54 \text{ MHz} \le f \le$ 1002 MHz	-45dBmV	Measured in 4 MHz BW including discretes
Discrete tones only	$\begin{array}{l} 54 \text{ MHz} \leq f \leq \\ 1002 \text{ MHz} \end{array}$	-50 dBmV	

Table 2-19. Extended Band D Transmitter Spurious Output

*The dBc value is measured relative to the total transmitted signal power.

2.5.2 Band E Transmit Spurious Emissions

The spurious signals at the output F-connector of a Node operating in Band E MUST conform to Table 2-20. Unless otherwise stated the requirements in Table 2-20 apply to transmissions in any of the modes (MoCA 2.0 PHY, Bonded-PHY, or MoCA 1 PHY).

Parameter	Frequency Range	Maximum Value*	Notes
Spurious at fc when transmitting in MoCA 2.0 PHY	fc or fc ₁ +62.5 MHz	-23 dBc	The spurious at $fc_1+62.5$ MHz is only allowed when SECONDARY_CHANNEL_OFFSET $\neq 0b00$
Spurious at fc when transmitting in Bonded-PHY	(fc ₁ and fc ₂) or fc ₁ +62.5 MHz	-23 dBc	When the spurious are at fc_1 and fc_2 : A spurious at fc_1 with power relative to the total power of the channel centered at fc_1 and a spurious at fc_2 with power relative to the total power of the channel centered at fc_2 When the spurious is at $fc_1+62.5$ MHz: the power of the spurious is relative to the higher of (1) the total power of the channel centered at fc_1 and (2) the total power of the channel centered at fc_2 .
Spurious at fc ₀ when transmitting in MoCA 1 PHY	fc_0 or fc or $fc_1+62.5$ MHz	-23 dBc	The spurious at $fc_1+62.5$ MHz is only allowed when SECONDARY_CHANNEL_OFFSET $\neq 0b00$
Spurious and Noise	0.5 MHz < f ≤ 2.1 MHz	-50 dBm / 152 kHz	
Spurious and Noise	2.1 MHz < f ≤ 2.5 MHz	-78 dBm / 152 kHz	
Spurious and Noise	2.5 MHz < f ≤ 3 MHz	-40 dBm	Integrated power over the frequency range
Spurious and Noise	$\begin{array}{c} 3 \text{ MHz} < f \leq 4 \\ \text{MHz} \end{array}$	-20 dBm	Integrated power over the frequency range
Spurious and Noise	900 MHz < f < 950 MHz	-55 dBm / 20 MHz	
Spurious and Noise	950 MHz ≤ f ≤ 2500 MHz	-94 dBm / 20 MHz	
Spurious and Noise	2500 < f < 3000 MHz	-80 dBm / 20 MHz	

 Table 2-20. Band E Transmitter Spurious Output

* The dBc value is measured relative to the total transmitted signal power.

2.5.3 Band F Transmit Spurious Emissions

The spurious signals at the output F-connector of a Node MUST conform to Table 2-21 when operating in band F_{SAT} and MUST conform to Table 2-22 when operating in band F_{CBL} . Unless otherwise stated the requirements in both Table 2-21 and Table 2-22 apply to transmissions in any of the modes (MoCA 2.0 PHY, Bonded-PHY, or MoCA 1 PHY).

Parameter	Frequency Range	Maximum Value*	Notes
Spurious at fc when transmitting in MoCA 2.0 PHY	fc or fc ₁ +62.5 MHz	-23 dBc	
Spurious at fc when transmitting in Bonded- PHY	(fc ₁ and fc ₂) or fc ₁ +62.5 MHz	-23 dBc	When the spurious are at fc1 and fc2: A spurious at fc1 with power relative to the total power of the channel centered at fc1 and a spurious at fc2 with power relative to the total power of the channel centered at fc2 When the spurious is at fc1+62.5 MHz: the power of the spurious is relative to the higher of (1) the total power of the channel centered at fc1 and (2) the total power of the channel centered at fc2.
Spurious at fc ₀ when transmitting in MoCA 1 PHY	fc_0 or fc or $fc_1+62.5$ MHz	-23 dBc	
Spurious and Noise	$10 \text{ kHz} < f \le 1$ MHz	25 mV p-p at 12 ohm	
Spurious and Noise	1 MHz < f < 500 MHz	-58 dBm / 50 MHz	
Spurious and Noise	500 MHz ≤ f ≤ 575 MHz	-83 dBm / 50 MHz	
Spurious and Noise	575 MHz < f < 600 MHz	-52 dBm	
Spurious and Noise	925 MHz < f < 950MHz	-52 dBm	
Spurious and Noise	$\begin{array}{l} 950 \text{ MHz} \leq f \\ < 3000 \text{ MHz} \end{array}$	-94 dBm / 27 MHz	

Table 2-21. Band FSAT Transmitter Spurious Output

* The dBc value is measured relative to the total transmitted signal power.

Parameter	Frequency Range	Maximum Value*	Notes
Spurious at fc when transmitting in MoCA 2.0 PHY	fc or fc ₁ +62.5 MHz	-23 dBc	
Spurious at fc when transmitting in Bonded- PHY	(fc ₁ and fc ₂) or fc ₁ +62.5 MHz	-23 dBc	When the spurious are at fc1 and fc2: A spurious at fc1 with power relative to the total power of the channel centered at fc1 and a spurious at fc2 with power relative to the total power of the channel centered at fc2 When the spurious is at fc1+62.5 MHz: the power of the spurious is relative to the higher of (1) the total power of the channel centered at fc1 and (2) the total power of the channel centered at fc2.
Spurious at fc ₀ when transmitting in MoCA 1 PHY	fc_0 or fc or $fc_1+62.5$ MHz	-23 dBc	
Spurious and Noise	1 MHz < f < 54 MHz	-58 dBm / 50 MHz	
Spurious and Noise	$\begin{array}{l} 54 \text{ MHz} \leq f \leq \\ 575 \text{ MHz} \end{array}$	-94 dBm / 4 MHz	
Discrete tones only	$54 \text{ MHz} \le f \le$ 575 MHz	-99 dBm	
Spurious and Noise	575 MHz < f < 600 MHz	-52 dBm	

Table 2-22. Band FCBL Transmitter Spurious Output

* The dBc value is measured relative to the total transmitted signal power.

2.6 MoCA 2.5 Band Specific Transmit Spurious and Noise Emissions

In addition to the spurious and noise requirements in this section, a Node MUST also simultaneously comply with the spurious requirements in Section 2.4.

2.6.1 Band ExD Transmit Spurious and Noise Emissions

The spurious and noise at the output of a Node transmitting in band ExD MUST conform to Table 2-23.

Parameter	Frequency Range	Maximum Value*	Notes
Spurious and noise	54 MHz \leq f \leq 1002 MHz	-45dBmV	Measured in 4 MHz BW including discretes
Discrete tones only	$54 \text{ MHz} \le f \le 1002 \text{ MHz}$	-50 dBmV	

Table 2-23. Extended Band D Transmitter Spurious Output

2.6.2 Band E Transmit Spurious Emissions

The spurious and noise at the output of a Node transmitting in Band E MUST conform to Table 2-24.

Parameter	Frequency Range	Maximum Value*	Notes
Spurious and Noise	$0.5 \text{ MHz} < f \le 2.1 \text{ MHz}$	-50 dBm / 152 kHz	
Spurious and Noise	$2.1 \text{ MHz} < f \le 2.5 \text{ MHz}$	-78 dBm / 152 kHz	
Spurious and Noise	$2.5 \text{ MHz} < f \le 3 \text{ MHz}$	-40 dBm	Integrated power over the
			frequency range
Spurious and Noise	$3 \text{ MHz} < f \le 4 \text{ MHz}$	-20 dBm	Integrated power over the
			frequency range
Spurious and Noise	900 MHz < f < 950 MHz	-55 dBm / 20 MHz	
Spurious and Noise	$950 \text{ MHz} \le f \le 2500 \text{ MHz}$	-94 dBm / 20 MHz	
Spurious and Noise	2500 < f < 3000 MHz	-80 dBm / 20 MHz	

2.6.3 Band F Transmit Spurious and Noise Emissions

The spurious and noise at the output of a Node MUST conform to Table 2-25 when transmitting in band F_{SAT} and MUST conform to Table 2-26 when transmitting in band F_{CBL} .

Parameter	Frequency Range	Maximum Value*	Notes
Spurious and Noise	$10 \text{ kHz} < f \le 1 \text{ MHz}$	25 mV p-p at 12 ohm	
Spurious and Noise	1 MHz < f < 500 MHz	-58 dBm / 50 MHz	
Spurious and Noise	$500 \text{ MHz} \le f \le 575 \text{ MHz}$	-83 dBm / 50 MHz	
Spurious and Noise	575 MHz < f < 600 MHz	-52 dBm	
Spurious and Noise	925 MHz < f < 950MHz	-52 dBm	
Spurious and Noise	$950 \text{ MHz} \le f < 3000 \text{ MHz}$	-94 dBm / 27 MHz	

Table 2-25. Band F _{SAT}	Transmitter	Spurious Output
-----------------------------------	-------------	------------------------

Parameter	Frequency Range	Maximum Value*	Notes
Spurious and Noise	1 MHz < f < 54 MHz	-58 dBm / 50 MHz	
Spurious and Noise	$54 \text{ MHz} \le f \le 575 \text{ MHz}$	-94 dBm / 4 MHz	
Discrete tones only	$54 \text{ MHz} \le f \le 575 \text{ MHz}$	-99 dBm	
Spurious and Noise	575 MHz < f < 600 MHz	-52 dBm	

Table 2-26. Band F_{CBL} Transmitter Spurious Output

2.7 Receiver Minimum Sensitivity

2.7.1 MoCA 2.0 Receiver Minimum Sensitivity

A receiving Node in a MoCA Network operating in MoCA 2.0 Mode MUST achieve on its Primary Channel a minimum PHY Rate per received power level as specified in Table 2-27 when operating in band ExD and as specified in Table 2-28 when operating in bands E or F and under the following conditions:

• The in-home cable plant response is Flat Channel

A receiving Node in a MoCA Network operating in Turbo Mode MUST achieve on its Primary Channel a minimum PHY Rate per received power level as specified in Table 2-29 when operating in band ExD and as specified in Table 2-30 when operating in bands E or F and under the following conditions:

• The in-home cable plant response is Flat Channel

The minimum PHY Rate requirement as a function of the receiver input level in MoCA 2.0 Mode for both MoCA 2.0 Baseline Mode and Turbo Mode are shown in Figure 2-15 for band ExD and in Figure 2-16 for bands E and F.

For bonded-pair Nodes the above requirements apply to both the Primary Channel and the Secondary Channel independently.

Receive Power Level X [dBm]	Minimum Required PHY Rate [Mbps]
$-44 \le X \le -2$	600
$-64 \le X \le -44$	600+(580/23)(X+44)

Table 2-27. Minimum PHY Rate vs. Receive Power Level in Band ExD

Table 2-28. Minimum PHY Rate vs. Receive Power Level in Bands E and F

Receive Power Level X [dBm]	Minimum Required PHY Rate [Mbps]
$-43 \le X \le -2$	600
$-63 \le X \le -43$	600+(580/23)(X+43)

Table 2-29. Minimum PHY F	Rate vs. Receive Power Level	l for Turbo Mode in Band ExD
---------------------------	------------------------------	------------------------------

Receive Power Level X [dBm]	Minimum Required PHY Rate [Mbps]
$-42.41 \le X \le -2$	640
$-64 \le X \le -42.41$	640+(580/23)(X+42.41)

Receive Power Level X [dBm]	Minimum Required PHY Rate [Mbps]
$-41.41 \le X \le -2$	640
$-63 \le X \le -41.41$	640+(580/23)(X+41.41)

Table 2-30. Minimum PHY Rate vs. Receive Power Level for Turbo Mode in Bands E and F

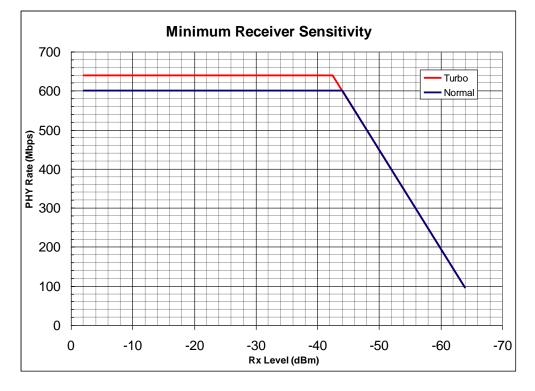


Figure 2-15. Minimum Receiver Sensitivity in Band ExD

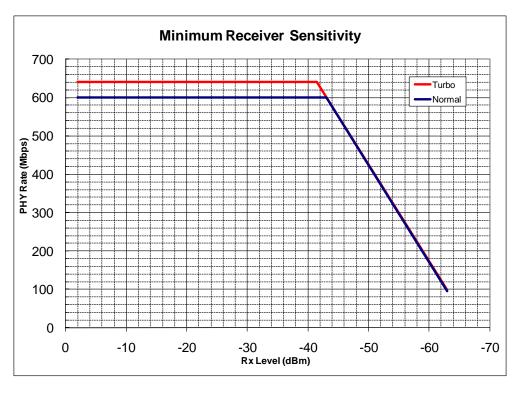


Figure 2-16. Minimum Receiver Sensitivity in Bands E and F

2.7.2 MoCA 2.5 Receiver Minimum Sensitivity

A receiving Node in a MoCA Network operating in MoCA 2.5 PHY Mode MUST achieve on each bonded Channel a minimum PHY Rate per received power level as specified in Table 2-31 and illustrated in Figure 2-17 These requirements apply under the following conditions:

• The in-home cable plant response is Flat Channel

Receive Power Level X [dBm]	Minimum Required PHY Rate [Mbps]
$-41 \le X \le +1$	650
$-63 \le X \le -41$	650+(580/23)(X+41)

Table 2-31. MoCA 2.5 Minimum PHY Rate vs. Receive Power Level

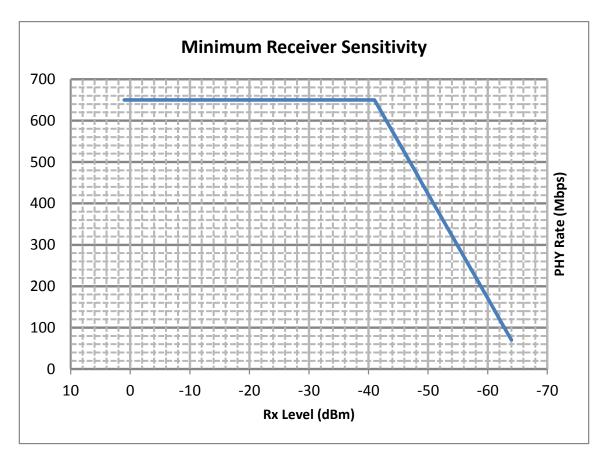


Figure 2-17. MoCA 2.5 Minimum Receiver Sensitivity

2.8 Coexistence with Other Signals

2.8.1 CATV and DOCSIS Susceptibility

2.8.1.1 Band ExD

When operating in band ExD or subbands D-Low or D-High, a Node MUST meet all the performance requirements in the presence of simultaneous CATV and DOCSIS signals at the input to the Node as shown in Table 2-32.

Parameter	Value	Notes
Input Frequency range	54-1002 MHz	
RF channel spacing	6 MHz	
Maximum analog video signal	+15 dBmV	Peak NTSC picture carrier level
level (per channel)		in 6 MHz bandwidth
Maximum digital signal level	+15 dBmV	Average power in 6 MHz
(per channel)		bandwidth
Maximum number of carriers	158	Up to 1002 MHz
Maximum number of analog	83	Up to 550 MHz
carriers		
Maximum aggregate power level	33 dBmV	

Table 2-32. CATV Signals Coexisting with Band ExD

2.8.1.2 Band F_{CBL}

When operating in band F_{CBL} , a Node MUST meet all the performance requirements in the presence of simultaneous CATV signals at the input to the Node as shown in Table 2-33.

Parameter	Value	Notes
Input frequency range	54 - 575MHz	
RF channel spacing	6 MHz	
Maximum analog video signal	+15 dBmV	Peak NTSC picture carrier level in 6 MHz
level (per channel)		bandwidth
Maximum digital video signal	+15 dBmV	Average power in 6 MHz bandwidth
level (per channel)		
Maximum number of carriers	87	
Maximum aggregate power	30 dBmV	
level		

Table 2-33. CATV Signals Coexisting with Band FCBL

2.8.2 Satellite Susceptibility

2.8.2.1 Band E

When operating in band E, a Node MUST meet all the performance requirements in the presence of the following simultaneous signals at the F-connector:

- An OSP satellite transponder signal at the input to the Node as specified in Table 2-34
- FSK control signal as specified in Table 2-35
- Maximum intermittent power levels as specified in Table 2-36

Table 2-34. OSP Satellite Transponder Signal Level for Band E Devices

Parameter	Value
Input Frequency range	900-2150 MHz
Signal level (in any 24 MHz bandwidth in the Input Frequency range)	Up to -20 dBm (average power per carrier)
Total aggregated power level (measured at the Node)	-10 dBm

Table 2-35. FSK Control Signal

Parameter	Value
Tx Carrier Frequency	$2.3 \text{ MHz} \pm 10 \text{ kHz}$
Tx Frequency shift	± 40 kHz +10/-5 kHz
Asynchronous Serial Bit Rate	39 kbaud ±0.5%
Tx Carrier maximum Power	-1 dBm (75 ohms)

Frequency	Power Level*
0.2 MHz to 0.6 MHz	Increasing linearly from -31dBm/200kHz to -28dBm/200kHz
> 0.6 MHz to 1 MHz	Increasing linearly from -28dBm/200kHz to -25dBm/200kHz
> 1 MHz to 1.8 MHz	Increasing linearly from -25dBm/200kHz to -16dBm/200kHz
> 1.8 MHz to 2 MHz	Increasing linearly from -16dBm/200kHz to -9dBm/200kHz
> 2.0 MHz to 2.1 MHz	Increasing linearly from -9dBm/200kHz to -1dBm/200kHz
> 2.1 MHz to 2.5 MHz	-1 dBm/200 kHz
> 2.5 MHz to 50 MHz	Decreasing linearly from -1 dBm to -30 dBm/200 kHz
> 50 MHz to100 MHz	-35 dBm/200 kHz; -30 dBm Aggregate
> 100 MHz to 200 MHz	-45 dBm/200 kHz; -40 dBm Aggregate
> 200 MHz to 375 MHz	-55 dBm/200 kHz; -50 dBm Aggregate
> 375 MHz to 395 MHz	-65 dBm/200 kHz; -60 dBm Aggregate
> 395 MHz to 400 MHz	-96 dBm/200 kHz
> 400 MHz to 700 MHz	-116 dBm/200 kHz
> 700 MHz to 705 MHz	-96 dBm/200 kHz
> 705 MHz to 725 MHz	-65 dBm/200 kHz; -60 dBm Aggregate
> 725 MHz to 900 MHz	-55 dBm/200 kHz; -50 dBm Aggregate

Table 2-36. Maximum Intermittent Power Levels at the Input to the Node

* The power level is the measured peak power level over any 5 µs time interval.

2.8.2.2 Band F_{SAT}

When operating in band F_{SAT} , a Node MUST meet all the performance requirements in the presence of the following simultaneous signals at the F-connector:

- OSP satellite transponder signal level as shown in Table 2-37
- DiSEqCTM signal as show in Table 2-38
- Maximum intermittent power levels as specified in Table 2-39
- UHF analog video signal as shown in Table 2-40

Table 2-37. OSP Satellite Transponder Signal Level for Band FSAT Devices

Parameter	Value	Notes
Input frequency range	950 - 3000 MHz	
Maximum signal power level	-25 dBm	Per 27MHz transponder
Maximum total aggregated power level	-7 dBm	

Parameter	Value	Notes
Tx carrier frequency	17.6 kHz - 26.4 kHz	
Signal level	200 mVp-p – 1Vp-p	
DiSEqC [™] impedance	12 – 18 ohm	Rx mode

Frequency	Power Level*
$1 \text{ MHz} \le f \le 10 \text{ MHz}$	-30 dBm / 200 kHz, -13 dBm aggregate
$10MHz < f \le 300MHz$	-35 dBm / 200 kHz, -30 dBm aggregate
$300 < f \le 450 MHz$	-45 dBm / 200 kHz, -40 dBm aggregate
$450 < f \leq 625 MHz$	-55 dBm / 200 kHz, -50 dBm aggregate
$625 < f \le 645 MHz$	-65 dBm / 200 kHz, -60 dBm aggregate
$645 \text{ MHz} < f \le 650 \text{ MHz}$	-96 dBm / 200 kHz
$650 \text{ MHz} < f \le 875 \text{ MHz}$	-116 dBm / 200 kHz
$875 \text{ MHz} < f \le 880 \text{ MHz}$	-96 dBm / 200 kHz
$880 < f \le 900 MHz$	-65 dBm / 200 kHz, -60 dBm aggregate
$900 < f \le 950 \text{ MHz}$	-55 dBm / 200 kHz, -50 dBm aggregate

Table 2-39. Maximum Intermittent Power Levels at the Input to the Node

 \ast The power level is the measured peak power level over any 5 μs time interval.

Table 2-40. UHF Analog Video Signal

Parameter	Value	Notes
Input frequency range	500 – 575MHz	
Maximum signal power level	-27 dBm	Peak NTSC picture carrier level in 6MHz
(per channel)		bandwidth
Maximum number of carriers	2	
Maximum aggregate power	-24 dBm	
level		

2.8.3 Receiver Sensitivity to Gated Noise in Bands E and F

A receiving Node in a MoCA Network operating in MoCA 2.0 Mode MUST achieve on its Primary Channel a minimum PHY Rate per received power level as specified in Table 2-41 in the presence of a gated AWGN noise of any duty cycle, any cycle duration, and any power density levels up to -145 dBm/Hz, at the F-connector input to the Node.

These minimum PHY Rate requirements apply under the following conditions:

- The network is operating in bands E or F.
- The in-home cable plant response is Flat Channel.

For bonded-pair Nodes the requirements specified in this section apply to both the Primary Channel and the Secondary Channel independently.

Input Level [dBm]	Minimum Required PHY Rate [Mbps]
-6	600
-25	540
-34	426
-38	330
-44	205

Table 2-41. Bands E and F Minimum PHY Rate vs. Receive Power Level with Gated Noise

2.9 Sensitivity to ATSC Interference

The requirements in this section apply only when a Node is operating in band E or band F.

A receiving Node in a MoCA Network operating in MoCA 2.0 Mode MUST achieve on its Primary Channel a minimum PHY Rate as follows:

When operating in band E:

- 190 Mbps with four to six co-channel ATSC signals
- 330 Mbps with three or less co-channel ATSC signals
- When operating in band F:
 - o 330 Mbps with three or less co-channel ATSC signals

The above minimum PHY Rate requirements apply under the following conditions:

- The in-home cable plant response is Flat Channel with the addition of the co-channel ATSC signals meeting the following additional restriction:
 - When operating in band E: Each of the ATSC signals is of power level up to -65 dBm each at the F connector occurring anywhere within band E and:
 - i. When there are four to six co-channel ATSC signals, their center frequencies are no more than 12 MHz apart.
 - ii. When there are three or less co-channel ATSC signals, their center frequencies are no more than 18 MHz apart
 - When operating in band F: Each of the ATSC signals is of power level up to -65 dBm each at the F connector occurring anywhere within band F up to 698 MHz (upper edge of the ATSC signal), and the center frequencies of the ATSC signals are no more than 18 MHz apart.
- All the Nodes in the network have recovered from the appearance of the co-channel ATSC signals (including if necessary rejoining or reforming the network as specified below).

A receiving Node in a MoCA Network operating in band E or band F in MoCA 2.0 Mode MUST achieve on its Primary Channel a minimum PHY Rate of 600 Mbps under the following conditions:

- Three or less adjacent ATSC signals of power up to -65 dBm each at the F connector present:
 - When operating in band E: anywhere in band E outside the MoCA Network channel of operation
 - When operating in band F: anywhere in band F up to 698 MHz (upper edge of ATSC signal) outside the MoCA Network channel of operation

A Node in a MoCA Network MUST be able to reform the existing MoCA Network within the time T_{ATSC_RFRM} , as specified in Table 2-42, following the appearance of the following signals at the input to the Node:

- When operating in band E: up to six ATSC signals each at -65 dBm, appearing anywhere within band E but with no more than 3 ATSC signals in any 50 MHz band.
- When operating in band F: up to three ATSC signals each at -65 dBm, appearing anywhere within band F up to 698 MHz (upper edge of the ATSC signal).

A Node in a MoCA Network MUST be able to rejoin the existing MoCA Network within T_{ATSC_RJOIN} , as specified in Table 2-43, following the appearance of the following signals at the input to the Node:

- When operating in band E: up to six ATSC signals each at -65 dBm, appearing anywhere within band E but with no more than 3 ATSC signals in any 50 MHz band.
- When operating in band F: up to three ATSC signals each at -65 dBm, appearing anywhere within band F up to 698 MHz (upper edge of the ATSC signal).

Band of Operation	# of Nodes	T _{ATSC_RFRM} [sec]	
		$T_{LP_{MIN}} = T_{LP_{MIN1}}$ for at	$T_{LP_{MIN}} = T_{LP_{MIN2}}$ for
		least one Node	all Nodes
E	2 to 6	115	235
Е	7 to 16	215	335
F	2 to 6	130	250
F	7 to 16	230	350

 Table 2-42. ATSC Interference Maximum Time to Reform a Network

Band of Operation	T _{ATSC RJOIN} [sec]		
	Node's LOF = Channel of existing Node's LOF \neq Channel of existing		
	MoCA Network	MoCA network	
E	25	50	
F	25	70	

2.10 Non-Transmit Spurious and Noise Emissions

2.10.1 Extended Band D Non-Transmit Emissions

The spurious signals from a Node, when operating in extended band D and not transmitting, at the output of the MoCA F-connector, MUST conform to Table 2-44. For a Node supporting Channel Bonding this requirement applies to each of the Node's MoCA 2.0 PHY transmitters independently.

Parameter	Frequency Range	Maximum Value
Spurious at multiples of 25 MHz	1150 to 1650 MHz where: $fc - 150 \text{ MHz} \le f \le fc$ + 150 MHz	-90 dBm/200 kHz
Spurious at multiples of 25 MHz	1150 to 1650 MHz where: $f \le fc - 175$ MHz or $f \ge fc + 175$ MHz	-72 dBm/200 kHz
Spurious at multiples of 25 MHz	1125 MHz and 1675 to 2150 MHz	-72 dBm/200 kHz
Spurious excluding multiples of 25 MHz	1125 to 2150 MHz	-110 dBm/200 kHz

* fc represents the center frequency of the Node's MoCA 2.0 PHY transmitter

2.10.2 Band E Non-Transmit Emissions

The spurious signals from a MoCA 2.0 Node, when operating in band E and not transmitting, at the output of the F-connector, MUST conform to Table 2-45. For a Node supporting Channel Bonding this requirement applies to each of the Node's MoCA 2.0 PHY transmitters independently.

Parameter	Frequency Range	Maximum Value
Spurious and Noise	0.5 to ≤ 2.1 MHz	-50 dBm/152kHz
Spurious and Noise	$2.1 \text{ to} \le 4.0 \text{ MHz}$	-78dBm/152kHz
Spurious at multiple of 25 MHz	425 MHz to 675 MHz	-90 dBm/200kHz
	where:	
	fc-150 MHz \leq f \leq fc+150 MHz	
Spurious at multiple of 25 MHz	425 MHz to 675 MHz	-72 dBm/200kHz
	where:	
	$f \le fc-175 \text{ MHz or}$	
	$f \ge fc+175 \text{ MHz}$	
Spurious at multiple of 25 MHz	25 MHz to 400 MHz and	-72 dBm/200kHz
	700 MHz to 925 MHz	
Spurious emissions and Noise	4 MHz to 400 MHz and	-96 dBm/200 kHz
excluding multiples of 25 MHz	700 MHz to 950 MHz	
Spurious emissions and Noise	400 MHz to 700 MHz	-108 dBm/200 kHz
excluding multiples of 25 MHz	where:	
	$f \le fc-175 \text{ MHz or}$	
	$f \ge fc+175 \text{ MHz}$	
Spurious emissions and Noise	400 MHz to 700 MHz	-114 dBm/200 kHz
excluding multiples of 25 MHz	where:	
	fc-175 MHz < f < fc+175 MHz	
Up to 3 temporally constant spurs*	In any 50 MHz band centered at	-102 dBm/200 kHz
excluding multiples of 25 MHz	25n MHz where:	
	n = 17 to 27	
Spurious and Noise	950 to 2500 MHz	-94 dBm/20 MHz
Spurious and Noise	> 2500 to 3000 MHz	-80 dBm/20 MHz

Table 2-45. Band E Non-Transmit Emissions Limits

*Temporally constant spur is a constant amplitude spur measured over a 5 minute interval.

2.10.3 Band F Non-Transmit Emissions

The spurious signals from a Node at the output of the F-connector when not transmitting MUST conform to Table 2-46 when operating in band F_{SAT} and MUST conform to Table 2-47 when operating in band F_{CBL} . For a Node supporting Channel Bonding this requirement applies to each of the Node's MoCA 2.0 PHY transmitters independently.

Parameter	Frequency Range	Maximum Value
Spurious and Noise	$10 \text{ KHz} \le f \le 1 \text{ MHz}$	25 mV p-p at 12 ohm
Spurious and Noise	1 MHz < f < 500 MHz	-58 dBm / 50 MHz
Spurious and Noise	$500 \text{ MHz} \le f \le 575 \text{MHz}$	-83 dBm / 50 MHz
Spurious at multiple of 25 MHz	$600 \text{ MHz} \le f \le 650 \text{ MHz}$	-72 dBm / 200 KHz
Spurious Emissions and Noise	575MHz < f < 650MHz	-96 dBm / 200 kHz
excluding multiples of 25 MHz		
Spurious at multiple of 25 MHz	$675 \text{ MHz} \le f \le 850 \text{ MHz}$	-90 dBm / 200 kHz
Spurious Emissions and Noise	$650 \text{ MHz} \le f \le 875 \text{ MHz}$	-114 dBm / 200 kHz
excluding multiples of 25 MHz		
Up to 3 temporally constant spurs*	In any 50 MHz band centered at	-102 dBm / 200 kHz (each
excluding multiples of 25 MHz	25n MHz where:	spur)
	n = 27 to 34	
Spurious at multiple of 25 MHz	$875 \text{ MHz} \le f \le 925 \text{ MHz}$	-72 dBm / 200 KHz
Spurious Emissions and Noise	875 MHz < f < 950 MHz	-96 dBm / 200 kHz
excluding multiples of 25 MHz		
Spurious and Noise	950 MHz \leq f \leq 3000 MHz	-94 dBm / 27 MHz

 Table 2-46. Band FSAT Non-Transmit Emissions Limits

*Temporally constant spur is a constant amplitude spur measured over a 5 minute interval.

Parameter	Frequency Range	Maximum Value
Spurious and Noise	1 MHz < f < 54 MHz	-58 dBm / 50 MHz
Spurious at multiple of 25 MHz	$25 \text{ MHz} \le f \le 50 \text{ MHz}$	-72 dBm / 200 KHz
Spurious and Noise	$54 \text{ MHz} \le f \le 575 \text{MHz}$	-94 dBm / 4 MHz
Discrete tones only	$54 \text{ MHz} \le f \le 575 \text{MHz}$	-99 dBm
Spurious at multiple of 25 MHz	$600 \text{ MHz} \le f \le 650 \text{ MHz}$	-72 dBm / 200 KHz
Spurious Emissions and Noise	575MHz < f < 650MHz	-96 dBm / 200 kHz
excluding multiples of 25 MHz		
Spurious at multiple of 25 MHz	$675 \text{ MHz} \le f \le 850 \text{ MHz}$	-90 dBm / 200 kHz
Spurious Emissions and Noise	$650 \text{ MHz} \le f \le 875 \text{ MHz}$	-114 dBm / 200 kHz
excluding multiples of 25 MHz		
Up to 3 temporally constant spurs*	In any 50 MHz band centered at	-102 dBm / 200 kHz
excluding multiples of 25 MHz	25n MHz where:	(each spur)
	n = 27 to 34	
Spurious at multiple of 25 MHz	$875 \text{ MHz} \le f \le 2150 \text{ MHz}$	-72 dBm / 200 KHz
Spurious Emissions and Noise	875 MHz < f < 950 MHz	-96 dBm / 200 kHz
excluding multiples of 25 MHz		
Spurious Emissions and Noise	950 MHz \leq f \leq 2150 MHz	-110 dBm / 200 kHz
excluding multiples of 25 MHz		

*Temporally constant spur is a constant amplitude spur measured over a 5 minute interval.